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Abstract—The real network traffic characteristics makes it
difficult to estimate origin-destination flows only from statis-
tics for routers’ interfaces. The presented approach, based on
passively measured link traffic statistical properties, estimates
the flows, allowing for flow interdependence and seasonality.
Rescaled profile of the total daily traffic in the network is
used to compensate deterministic component of flows, before the
proper estimation takes place. For adequate identification of the
residual flows, it is assumed that they are mixtures of a number
of independent random processes, whose parameters are to be
identified along with the mixing coefficients. The results obtained
for real traffic in Abilene network are promising, and indicate
that data preprocessing and application of correct optimization
routines are of importance for further research.
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I. INTRODUCTION

Identification of individual flows in a graph, given only
measurements of the aggregated flow on each edge is an
abstraction of many important practical problems, the func-
tional magnetic resonance imaging [1] and road traffic origin-
destination modeling [2] being the two less obvious to be
recalled. The model and existing identification approaches
apply equally well to traffic matrix estimation (TME) in
computer networks. In the telecommunications, the knowledge
of traffic demand is often a prerequisite for modern network
management algorithms to operate [3]. Until now, practical
applicability of TME for network planning, provisioning and
routing was not appreciated much because of still inadequate
accuracy of the methods, but also because networks are
managed in decentralized manner in many aspects, e.g. route
selection, link capacity upgrade, domain name lookup policy
etc. However, the rise of software defined networks (SDN)
calls for centralized management policies, which may bring the
network to new levels of efficiency (in terms of e.g. quality of
service - QoS, power consumption reduction, costs of upgrade)
only if the network traffic is known well enough. Such demand
is close to be met by appearance of modern TME approaches;
our work tries to contribute in this field by proposing an
alternative identification routine which takes into account the
real-life traffic nature.

We propose here an alternative approach to contemporary
TME routines, as follows. Let us consider a network with N

nodes and L links. Each node generates traffic to all other
nodes, which results in N2−N directed flows which we can or-
der by their source node, and then the destination node. A flow
j is forwarded along its individual path that can be represented
as a binary vertical vector aj composed of elements aij , where
aij = 1 if flow j goes through link i, and zero otherwise. The
paths form a routing matrix A = (a1, ...,aN2−N ).

The traffic measurement process happens in discrete time,
with the discretization period much greater than the packet
round trip time. So, if X(t) denotes the data volumes trans-
mitted by flows in period number t, then the vector of
total traffic observed in period t on every link is a vector
Y (t) = AX(t). Let X and Y (without time index) denote all
samples of traffic generated by flows over some observation
period, and all flow measurements taken on links, respectively.
The problem is to infer about X from Y . Given the fact that
only traffic aggregates are observed, this problem is inherently
an undetermined one. However, with certain assumptions, one
is able to figure out at least basic statistical properties of the
flows, especially mean flow values, X̄ .

With adequately strong assumptions about the generated
traffic, one is able to estimate the traffic matrix using relatively
simple apparatus. If we follow [4] and assume data transmitted
by each flow to be independent random variables with Poisson
distribution, X(t) ∼ Poisson(λ), then we can use mean
observed volumes on links as consistent estimators for Poisson
distribution parameters λ. This gives us the first-order equation
for λ estimation:

Ȳ = Aλ , (1)

where Ȳ is the sample mean for each link. Considering that
variance equals the expected value for Poisson distribution, it
was observed that the sample covariance for any two links
i, i′ is equal to the total of variances of all flows that pass this
link pair: cov(Yi, Yi′) =

∑
j aijai′jλj — with a big enough

sample number. Such second-order equation can be rewritten
for all links in matrix notation:

covY = A(AT ◦ λ) , (2)

where ‘◦’ stands for elementwise multiplication, and Λ is
a matrix made of λ vector replicated L times:

Λ
df
= [

L︷ ︸︸ ︷
λ,λ, . . . ,λ] .
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a) Absolute values of correlation coeffi-
cients of flows (white is 0, black is 1).

b) Exemplary histogram of volume sam-
ples.

c) Daily total traffic profile: raw (ragged,
blue) and filtered (smooth, green).

Fig. 1: Properties of original Abilene traffic.

Equations (1) and (2) form an overdetermined system, usually
solved by some optimization routine for minimization of
weighed square norm for RHS-LHS. Applying a gradient-
based optimization algorithm greatly improves the search
time. Unfortunately, the assumption about independent and
Poissonian traffic nature is completely unrealistic, thus adding
up to the ill-defined nature of (1, 2). We present related work
that handles these difficulties in Sec. II — then we propose our
approach in Sec. III. Numerical results are given and discussed
in Sec. IV; and we conclude in Sec. V.

II. RELATED WORK

To address the problem of inadequate number of measure-
ments for solving (1, 2), extra assumptions about the traffic
nature must be made. In early works, they were based on:
prior traffic matrix estimates, routing weights or destination
preferences for sources. The gravity model [5], falling into
the last category, has gained much attention. It assumes that
a traffic source distributes its traffic across destinations pro-
portionally to the ratios of the totals for ingoing and outgoing
network-wide traffic. The concept gets developed in [6], and
termed choice model, as it is assumed that the outgoing traffic
distribution reflects destinations’ appeal (e.g. in the sense of
content, QoS). Others combine gravity model with entropy
penalization [7].

TME based on second-order characteristics (2) has gained
critical reviews [8] as being inferior to a Bayesian approach,
which consists in calculation of conditional probability distri-
butions of flows, given link measurements. However, others
[9], [10] have tried to adapt Vardi’s original approach to the
non-Poissonian nature of real traffic, respectively, by replacing
(2) with nonlinear formula and applying a non-stationary
model — then, by projecting the problem onto a subspace
defined by (1), thus accelerating numerical search for the
solution.

The next generation of TME methods started with the
observation [11] that the actual traffic can be represented as
mixture of a relatively small number of common components
(called eigenflows) of three types: deterministic, spike and

noise. This reduces problem dimension, simultaneously cap-
turing major traffic properties: seasonality, correlation and long
tails. Proper construction of the matrices that map eigenflows
into real-life traffic flows is in fact principal component anal-
ysis (PCA). This technique gets further developed e.g. in [12]
to handle common phenomena like traffic anomalies. Alter-
natively, [13], [14] try to address inherent traffic variability
by using neural networks. The initial learning phase requires,
however, true flow information to be available. Similarly, [15],
[16] postulate to apply partial flow measurements — this time
in order to reduce computational complexity of TME in large
networks.

III. PROPOSED APPROACH

Hereby we propose a procedure for traffic matrix identi-
fication that takes into account most adverse real-life traffic
properties: daily profile, flow correlation and typical far-
from-Poisson flow stochastic nature. The procedure has been
developed and tested on Abilene network data [17], similarly
to a number of works cited above. Abilene flow data were
collected for 167 days in 5’ periods: they are correlated, cf.
Fig. 1a, not similar to Poisson distribution (cf. Fig. 1b), and
show a clear daily pattern (cf. Fig. 1c, ragged blue graph).

High correlation of flows results definitely from the fact
that they all follow, to various extent, the same daily profile;
but not only: higher-layer operations (like VPN) may also be
the reason. To make the matters worse, the raw data may be
considered dirty, in the sense that unusual long-lasting traffic
surges or idle periods can be easily found for some links,
indicating errors in measurement or data processing phases, or
abnormal activities, e.g. denial-of-service attacks. This issue
has already been addressed in [12].

To deal with the daily flow variability, we first need to
calculate the typical daily traffic profile, υ, common for all the
network. As the processed Abilene data cover a short period,
we see no reason to model the trend, i.e. long-term tendency
for traffic growth/shrinking. However, to work safely with
the daily profile, we had to exclude weekend samples from
further analysis, which still gives us 119 days of observations.



Furthermore, days with total of the traffic lying outside the
interval defined by standard deviation were treated as outliers,
and excluded. This reduced the number of valid days to
103. The daily 5’ traffic profile was calculated by averaging
corresponding time-of-day samples smoothed over a 1-hour
window (cf. Fig. 1c, green smooth line). Usefulness of such
profile was verified by applying it, rescaled individually, to
known flows so that the total covariance of residual traffic
was as small as possible. The residual total traffic was then
analyzed, and still showed a fat tail distribution, meaning there
were still samples that would not be handled by any finite-
variance traffic model. Once again, outliers were hunted, but
on much smaller timescale: all five-minute samples outside of
95% confidence interval were replaced by the corresponding
data from profile, and normalized. Such operation in fact
reshapes the measurement data and limits the modeling scope,
but on other hand it curbs traffic variability to limits that are
predictable and manageable by the kind of model proposed.
Those samples were decided to be dropped off from further
analysis, and the daily profile was recalculated, giving the final
traffic profile, υ(t), used consistently for all links.

As the flows are currently unknown, we propose to use υ to
bring down the interdependence of observed link traffic. How-
ever, the flows comprising that observed traffic are unknown
yet. So we propose to assume temporarily that each flow is of
the form:

ψi(t) = αiυ(t) , (3)

that is, a common profile scaled by individual coefficient. After
a close practical examination of subsequent flows, we found
that adding a time lag parameter to (3) did not improve the
fitting significantly, while doubling the size of model parameter
space. By cloning ψi(t) onto all days we get a temporary
matrix of “samples” Ψ (parametrized by α). Now let us find
α (i.e., “generate traffic”) such that, when subtracted from
observed link traffic, leaves residual link traffic correlated as
little as possible. Formally, one looks for

α? = arg min
α
|| cov(Y −AΨ)||1 . (4)

The above procedure does its best to eliminate the determin-
istic component from unknown flows, taking into account the
routing matrix. The search for optimum must be constrained to
avoid unreasonable solutions, and should use gradient formula
rather than estimation to ensure convergence.

Consequently, whatever the real flows are, the remaining
residual traffic observed on links is

Ỹ
df
= Y −Aα?υ . (5)

Although somewhat deprived of seasonality, Ỹ is all the same
the effect of mixing correlated and non-Poissonian flows. To
address the latter issue, let us peek at sample distributions of
the original flows with daily profile removed:

Ũ
df
= X −α?υ . (6)

Representative histograms of some residual flows and residual
flow variances are shown in Fig. 2. They certainly do not
resemble Poisson or Gauss distributions, and flow means
prevalently are negative. We propose to assume the residential
flows to have distribution similar to extreme value (EV)
distribution, for practical reasons. EV has two parameters: shift

 

 

0 50 100 150
10

-1

10
0

10
1

10
2

10
3

flow

re
s
id

u
a
l 

fl
o
w

 v
a

ri
a

n
c
e
 t

o
 P

o
is

s
o
n

-l
ik

e
 m

e
a

n
 r

a
ti
o

Fig. 3: Ratios of residual flows variance to the flow means.

µ and scale σ — which is still twice as many parameters
as for Poisson, but we hope it to be a reasonable choice,
rather than using more general 3-parameter distributions. EV
is widely used to model natural phenomena as rainfall or
sea level [18], [19]; in those cases with purpose to estimate
respective maximum values. When examining residual flows,
we found empirical distributions clearly asymmetric, and we
chose to use EV to find values of µ (responsible for low limit
of generated traffic) and σ (responsible for variance-to-mean
ratio) that modeled the individual flow best. Fig. 3 presents
ratios of variance to mean for all nonzero flows. Unlike for
Poison process, the ratios are generally much bigger than one,
and also highly variable. This motivates usage of EV, however
it does not leave a clue about their typical values that would
help accelerating the identification.

Assuming flows to be EV-distributed still does not address
the issue of flows correlation. Since it was already observed
[11] that the network traffic can be accurately represented
in practice by a small number of stochastic processes, we
propose to do likewise. Let us assume that the network traffic
on any link can be expressed as a weighted sum of a small
number of truly independent EV random variables, represented
by a random vector Φ:

Ũ = CΦ(µ,σ) . (7)

Matrix C serves to model the phenomenon of traffic flow inter-
dependence, by assigning a fraction cij of truly independent
random j-th EV variable to flow i. Assuming all elements
of C to be identified from link samples is unrealistic, one
has to decide a priori about C structure and, consequently,
the number of nonzero C elements and, consequently, Φ
parameters to be identified. While designing its structure and
initializing it for optimization, we want to:

• keep the product AC nonsingular — to keep first-
moment equations solvable;



−300 −200 −100 0 100 200 300
0

500

1000

1500

2000

2500

3000

3500

−500 0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

12000

−200 −100 0 100 200 300
0

1000

2000

3000

4000

5000

6000

7000

8000

−200 0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 2: Sample distributions for biggest residual flows #63, 87, 94, 99.

• keep the number of truly independent flows that com-
pose a real flow small — because superposition of
many flows would make the real flow look Gauss-like,
which was not observed in reality;

• find reasonable initial values for C — this may greatly
accelerate the optimization process.

Let us assume the number of truly independent EV processes
to be K, a number slightly bigger than the number of links. In
our case, K = 35. This is obviously much less than the total
number of flows — but we believe that just so few processes
determine most of the network traffic, as other authors already
observed.

To decide which C elements are to become decision
variables, we apply the routine presented in Algorithm 1. The
algorithms guarantees assignment of truly independent flows
to almost all flows, and good scatter of nonzero coefficients of
C (marked with dots in Fig. 4).

After completing the procedure of qualification of C
elements as decision variables, we can compile the decision
variable vector z = [σ,µ, ci,j:(i,j)∈W ], where W stands
for indices of nonzero C elements. Analogously to Vardi’s
approach (1,2) we want to find z? such that theoretical 1st
and 2nd order properties of the generated and mixed EV traffic
correspond to the observed link traffic properties. As for 1st
order properties, we propose to match theoretical distribution
of a sum of EV variables to the sample distribution,

Ỹ = ACΦ , (8)

using least squares, weighted by link traffic volume. Techni-
cally, it requires convolving selected, rescaled elements of Φ
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Fig. 4: Location of nonzero elements of traffic mixing matrix C.

Algorithm 1 Construction and initialization of C

1: Initialize C with zeros; initialize index of truly indepen-
dent flow q with 1.

2: Find unprocessed link pair (i, j) with biggest
|| cov(Ỹ i, Ỹ j)||.

3: Find set of flows F that pass either i or j but not both.
4: for every flow f ∈ F do
5: if number of nonzero C elements in row corresponding

to f is less than 3 then
6: Initialize those elements with 1

n each, n is the number
of flows using link i or j, whichever bigger.

7: end if
8: end for
9: if rank(AC) has not increased since long then

10: Roll back to step 2 and continue from there
11: end if
12: if all flows are assigned to truly independent flows or q =

K then
13: exit
14: end if
15: Increment q and proceed to step 2.

contributing to link traffic. As for 2nd order properties, we
minimize LHS-RHS of

cov Ỹ = D(DT ◦∆) , (9)

where D = AC and with δ being a vector of theoretical
variances of independent flows, δi = σ2

i π/6,

∆
df
= [

L︷ ︸︸ ︷
δ, δ, . . . , δ] .

IV. RESULTS

To find z? via minimization of mean square errors in
equations (8,9), one must decide upon proportions between

TABLE I: MRE for original and filtered traffic data.

MRE
95% 90% 50%

filtered traffic 1.02 0.87 0.64
original traffic 1.04 0.89 0.67



RHS-LHS imbalance in both systems. We assumed that the
sum of mean square errors in (8) counts as is, while analogous
sum in (9) is scaled by ratio γ and then added to the goal
function. Optimization was performed for a number of γ’s,
and the results of flow estimation were evaluated using mean
X error (MRE) measure [8]. MREn (for the n-th percentile of
traffic) is the mean relative error for biggest flows that amount
to n percent of the total traffic in the network. We found that
for a range of γ > 1 optimization results were practically
the same. Table I compares estimation errors for original
and filtered traffic data, measured for various percentiles. The
errors, in the sense of mean flow values are still quite big,
although the luckier half of flows get estimated with error
of 60%. This result, being still too high for e.g. energy-
efficient network management, can be already useful for rough
dimensioning.
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Fig. 5: Real (blue, solid) and estimated (red, dash-dotted) traffic for flow 71.

Surprisingly small difference of errors between filtered
and raw data can be explained by comparing time series of
estimated vs. real traffic. Many real flows still exhibit traffic
surges that passed into identification phase, without being
correctly suppressed by the filtering procedure. The proposed
model cannot handle them well; the resulting estimated traffic
is matched roughly w.r.t. the mean value, which results in
permanent overestimation. However, there is a number of flows
that get identified quite well in the stochastic sense, cf. e.g.
Fig. 5.

Alternatively, we may present the results using cumulative
distribution of the spatial relative errors for flows (SRE – cf.
[20]). The distributions are given in Fig. 6. The graph has the
same shape as in [16], but with bigger errors. However, in
this case we can compare only shapes because the mentioned
authors carried out identification with detailed measurements
of selected flows.

Looking in more detail at estimation errors for flows (cf.
Fig. 7), we see that many of the big flows have been identified
with ratio well below 1; while this might be considered still an
unimpressive result, it is hoped that there still exists possibility
for further improvement.

The proposed approach was also applied to another popular
test case, the European GÉANT network [21], frequently
referred to in the literature. However, the obtained results
turned out to be rather disappointing: the error rates went
considerably higher than in the Abilene case. Closer exami-
nation of the original flows showed their huge variability in
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time; sometimes in the order of magnitude. Consequently, the
de-profiling phase did not work correctly, and the subsequent
phases failed accordingly. The approach proposed here simply
does not handle scenarios with so varying traffic.

V. CONCLUSIONS

In work presented here we tried to manage adverse prop-
erties of the network traffic (correlation, fat tails, seasonality),
while extending as little as possible the original apparatus
for first and second moments-based identification of flows.
Although the results still qualify as preliminary, as compared
to third-generation of methods, we have reasons to claim
our approach still to be subject for improvement. Firstly, in
the numerical layer: it turned out a number of times that
only a change of optimization algorithm or analytical gradient
calculation made progress possible. The problem presented
here definitely demands a research using versatile optimization
algorithms. Secondly, further data preprocessing or taking
into account evident anomalies may improve prediction (as
emphasized in [12]). Finally, a number of other distribution
types may be considered for modeling the original independent
flows: in our view, EV does not handle multiple-peak and fat-
tail real distributions well. The above remarks may serve as
indications for further research.
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