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Abstract—Real-life call detail data (CDR) are used to build 

a graph of a social network of telecommunication operator 

customers. Affiliation network is used in graph construction 

since CDR data are partially kept anonymous. A number of 

the resulting network properties are examined to prove the 

correctness of the graph construction algorithm. Cliques in the 

network and network dynamics are analyzed; suggestions are 

given about possible utilization of the obtained information in 

the operation of a telecommunication operator. 
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I.  INTRODUCTION 

Social network analysis is a valuable tool for knowledge 
extraction from raw and massive data. In the 
telecommunication industry the fundamental set of data is 
call detail records, CDR, describing call attempts and 
successful calls made by telecommunication operator 
customers. 

The standard data mining techniques serve inferring 
phenomena of interest form the unstructured data. They are: 
daily activity profiles, call duration distributions, phone 
usage deviations preceding customer churn – and other kinds 
of statistics useful for sales strategy making. Constructing 
a graph of interpersonal connections from the same data is 
another step further of the knowledge extraction process. It 
allows behavior analysis of a user in the context of her 
network of relations with the – direct and indirect – 
neighbors. Data mining performed on such graphs gives 
results focused on individual customers, but is still capable 
of producing interesting statistical network parameters. 
Personalized results help addressing customers with 
customized sales offers or churn prevention actions, while 
the new statistical parameters give insight into coherence of 
customers community. There are numerous opinions [1] that 
social network analysis (SNA) is one of the top technologies 
of interest for the industry and the suite of off-the-shelf 
commercial SNA tools is already impressive. 

In the classical scenario CDRs contain plain phone 
numbers of both the caller and the callee. In such case the 
social graph construction consists in simply using phone 
numbers as vertices and calls as edges, calls frequency being 
the weight of each edge. Certainly, the data must prior be 
cleaned and filtered. However, in the case described in this 
paper the CDR data have been anonymized. Those data 

properties are described in Sec. II. Next, procedure of social 
graph construction from the data is presented in Sec. III. 
Properties of the obtained graph and their comparison to 
other typical kinds of social networks are given in Sec. IV. 
The paper concludes in Sec. V where possibilities of the 
result application and future work are outlined. 

II. CALL DATA 

The data subject to analysis contain call details from 
a wired telephony operator, from October to December 
several years ago. Call records have been deprived of the 
calling number, and the number being called has been 
scrambled in an unknown, uniform way, thus preserving 
uniqueness of numbers being called. The intent of the 
operator was to preserve privacy of its customers, while 
making it possible to performed data mining outside the 
company. Social network analysis was not intended initially, 
but social network reconstruction from the scrambled data 
was performed under the consent. 

The major research question posed was if it is possible to 
reconstruct classical social network graph, provided that 
a CDR contains the following fields: 

• customer ID, scrambled, 

• number being called, scrambled, 

• call date, time and duration, 

• call flags (successful, busy, timed out on waiting), 

• “business customer” flag. 
It is evident that customer IDs and the numbers being called 
belong to two different spaces, and there is no mapping 
available between a customer ID and a set of phone lines 
(and numbers) that he or she possesses. Therefore, no simple 
approach (as the one mentioned in Sec. I) is possible. 

The number of CDRs available was 133 million; all they 
were moved from plain files into relational database for more 
efficient processing. They cover both individual and 
commercial customer activities; however, these two market 
segments differ so much that they cannot be treated 
uniformly. Commercial customers generate and receive an 
order of magnitude bigger traffic, and do not fit some 
assumptions in Sec. III on the nature of interpersonal 
relations. That is why it was decided that commercial 
customers will be excluded from analysis. The first exclusion 
criterion is the “business customer” flag explicitly set; but it 
was noticed that some of the remaining “individual” 
customers exhibit business-like characteristics, for instance, 
a number of calls made that would be physically impossible 



for an individual to generate (e.g. the order of tens of 
thousands). Therefore, an extra exclusion criteria being the 
maximum number of calls made in the quarterly period being 
less that 2,400 (i.e. 24 daily, on average), was implemented. 
On the other hand, some data cleaning was needed in order 
to exclude invalid or very passive customers not providing 
any useful information. It was assumed that customers with 
less than 6 calls in the considered period will be removed.  

To verify correctness of these criteria, a histogram of 
number of calls was prepared, as in Figure 1. The histogram 
of number of calls made by the filtered customers covers 
almost all calls in its domain, and resembles a reasonable 
Gaussian distribution, indicating that most customers make 2 
calls a day on average. It is noticeable that the number of 
filtered inactive or over-active customers amounts to 6.7 
percent of the total of 316,000 customers. 

III. RECONSTRUCTION METHOD 

In absence of direct call details between the customers, 
the social network graph must be reconstructed using 
different approach. We followed an old observation by 
Simmel [2] that dyads and triads are the basic building 
blocks of a society. Extending this approach, we can build an 
affiliation network, using customers as ordinary nodes and 
called numbers as affiliation objects. This leads to creation of 
a bipartite graph. Next, we can assume that customers 
affiliated at commonly called numbers are also connected. 

Such approach has several drawbacks, though. First, it 
may lead to creation of very dense, complete subgraphs of 
individuals calling the same number. Hopefully, the 
customers exhibiting inhumanly intense behavior have 
already been excluded, but the upper qualification limit of 
2400 calls per quarter applies only to calling side; therefore 
there can exist numbers being called more frequently. 
Indeed, the most called number received as many as 176,000 
calls from nearly 5,100 different customers. It can hardly be 
expected that all of those customers maintain personal 
relationships. 

Therefore, the graph must be reconstructed using only the 
numbers most frequently dialed by customers. Let us denote 
the list of r most often dialed numbers by customer c, in 
descending order, by Dc=(nc,1, nc,2,…, nc,r). The reconstructed 

social network graph is then defined by sets of vertices and 
edges, {V,E}, where V={c1, c2,…} denotes all qualified 
customers and 
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The second problem is the choice of value for r, the 

ranking length or algorithm sensitivity. Keeping it small, e.g. 
r=2 goes in line with the observation about triads but 
prevents creation of bigger clusters in the graph. With r 
growing, the graph density grows unnecessarily, unimportant 
and accidental affiliations are treated with equal care as the 
important ones, and graph processing algorithms need more 
time to run. A series of attempts was made by the authors to 
reveal the most typical length of numbers frequently called, 
and apply it as r. The idea was inspired by Zipf’s law [8] and 
confirmed in [3] where it was shown that calls distribution is 
power-like wrt. the rank of the numbers called. In our case, 
a quick insight into the shapes of calls distribution revealed 
that they may definitely differ from Zipf’s law, and 
frequently taking a reverse “S” shape. A number of 
parametric models (power, arcus tangent and hyperbolic 
tangent) have been tried to model the actual call density 
distributions for every user. However, neither of them has 
lead to any kind of segmentation, i.e. to any typical cut-off 
values for r. 

The third and not the least problem encountered were 
resource requirements of algorithms for graph 
reconstruction. The number of graph vertices was 
n=295,000, computational complexity was O(n

2
r

2
) and 

memory requirements depended on the final graph density, 
difficult to assess. Similarly, algorithms for graph analysis 
(calculating diameter, betweenness, cliques etc.) have their 
own, substantial complexities. Since reconstruction 
algorithm and graph analysis algorithms implementation 
language was Java, a dedicated parallel machine, Azul, was 
harnessed for computations. Azul [4] is a specialized parallel 
Java coprocessor – in the configuration used by the authors 
96 cores and 60 GB RAM were available. Jung [5]  was used 
as the library for graph analysis, with necessary 
improvements for parallel processing, developed by the 
authors. 

IV. SOCIAL NETWORK PROPERTIES 

Verification of correctness of the reconstruction 
algorithm proposed in Sec. III is difficult because no testing 
(i.e. unanonymized) data are available. This is why we 
decided to calculate a number of statistical parameters of the 
obtained network in order to confront them with typical 
social networks. First, we expect power-law node degree 
distribution to hold for the reconstructed network. Figure 2 
shows probability P(k) of node with degree k to be found in 
the reconstruction network, for r=5. It has a shape commonly 
observed in other social networks. 

Second, we calculate a number of statistical properties of 
the reconstructed graph: 

• mean node degree k , 
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Figure 1. Histogram of calls made count by all customers (blue) vs. the 

calls made by the selected individual customers 



• clustering coefficient c, as the ratio of the number of 
triads in the graph, tripled, to the number of paths in the 
graph where path lengths equals 2, 

• number of graph vertices N, 

• estimated power coefficient α, determining the power 

law ( ) α−= CkkP , with C being some constant. 

These properties, calculated for two reconstructed graphs for 
r=4 and r=5, are compared in Table 1 to properties of other 
typical social graphs. The graph density, the mean clustering 
coefficient and the graph size grow with r but the exponent α 
value does not change much. Similarly, the distribution of 
node degree (not shown) remains similar to the one in Figure 
2. Consequently, one may hope that reconstructing social 
graph by analysis of commonly called numbers is stable 
w.r.t. the choice of cutoff parameter, r. Also, the 
reconstructed graph parameters fall quite well in ranges laid 
by other network examples, listed down in Table 1. 

TABLE 1. GRAPH STATISTICAL PROPERTIES FOR CHANGING 

ALGORITHM SENSITIVITY r, VS. OTHER NETWORKS PROPERTIES 

The reconstructed networks 

r k  c N α 

4 5.34 0.21 263,000 2.7 

5 7.02 0.24 278,000 2.75 

Other networks 

Interconnection 
topology in IP 
network 

5.98 0.18-0.3   10,700 2.5 

Actors and their 
contacts 

113.00 0.79 450,000 2.3 

Words appearing 
together in 
written texts 

70.00 0.77 461,000 2.7 

 
Structured data mining from social graphs is already used 

for sorting out important users, using some centrality 
measure, and utilizing their influential position in product 
promotion or churn management. Figure 3 presents the 
distribution of nodes betweenness [9] for the reconstructed 
network. (From now on we will refer to the graph 

reconstructed with r=5.) We can spot that power law holds 
also in this case, and we can easily pick most influential 
nodes to be addressed effectively with viral marketing or 
social campaigns, or with churn prevention schemes. 
Another meaningful measure is the mean distance between 
graph nodes: in our case this is 6.83, which nicely confirms 
Milgram’s observation [6] and is a useful hint for viral 
marketers. Noticeably, the graph dimension is only 19. 

The network presented in Table 1, for r=5 has exactly 
277,795  nodes, out of which 277,141 constitutes the largest 
connected component. The remaining 320 edges form triads 
and dyads. This should be considered as good result too, 
although, in general, all customers in a real 
telecommunication network should stay connected [10]. 

Let us now take a look at communities forming within 
the reconstructed network. By definition, a k-clique is 
a complete subgraph formed with k nodes, while 
a community contains cliques that share at least k-1 nodes.  
An exemplary graph of communities formed by 8-cliques is 
shown in Figure 4. With k decreasing, the number of 
detected communities grows; also the processing time is 
growing. Analyzing communities of various sizes may be 
a valuable help for construction of tariffs taking into account 
real users’ social habits. 

Another useful information can be observed from the 
graph dynamics. The input data cover last quarter of a year, 
and therefore it is possible to perform reconstruction only for 
the data from first two months, using December CDRs 
(including Xmas season) to discover attaching users’ 
preferences. There were 12,000 new customers in December, 
but only 28% of those have connected to any of the existing 
communities, preferring 3 to 4-person groups. It is also 
important to observe that newcomers do not create their own 
communities but prefer the existing ones. 

Figure 5 shows linking preferences for newly connected 
nodes. Probability of being linked to an existing node is 
linearly proportional to that node degree k – this is evident as 
far as k<20, where power law node degree scaling does not 
hold yet (cf. Figure 2). Such preferential linking is still in 
force for k ≥ 20; it shows by the slope being less steep than in 
Figure 2, just due to preferential linking. Therefore, it has 
been shown that our network dynamics follows the well 

Figure 2. Power-law node degree scaling in the reconstructed network 

0.0001

0.001

0.01

0.1

1

1 10 100

B

P
(B

)

Figure 3. Power-law betweenness centrality scaling in the reconstructed 
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known Barabási-Albert preferential linking mechanism [7]. 
This, once again, proves correctness of the reconstruction 
algorithm and is a valuable hint for telecommunication 
marketing, too. 

V. CONCLUSION 

By showing a number of similarities to existent networks 
and by examining network dynamics, we tried in Sec. IV to 
prove that the reconstruction algorithm proposed in Sec. III 
is correct, stable and useful in daily telecommunications 
practice. Therefore, one can quite reliably use affiliation 
networks to model direct relationships between telephone 
users. 

Additionally, by observing amount of data possessed and 
processed, it can be hoped that operating on affiliation 
network can easily be done using modest computing 
resources. The presented approach can be applied where no 
direct users relationship data are available, e.g. in inferring 
relationships from publicly available traces of users activity 
in the Internet (forum posts, records of events at clubs and 
organizations etc.). Specifically, it can help in 
telecommunication tariffs construction, churn reduction and 
prediction, and in viral marketing. 

Further work, being now in progress, concerns using 
edge weights and directed graphs to model interactions more 
precisely: new metrics (based on call frequency and rank of 
callees)  and asymmetric relationships are under concern. 
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Figure 4. Exemplary community graph formed by 8-node cliques Figure 5. Linking preferences histogram w.r.t. node degree being chosen 


