
WARSAW UNIVERSITY OF TECHNOLOGY
FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY

Mariusz Kamola, MSc

Algorithms for Optimisation Problems

with Implicit and Feasibility Constraints

PhD Dissertation

Thesis Supervisor

Professor Krzysztof Malinowski, DSc

WARSZAWA 2004

Contents 1

Contents

Symbols and acronyms used 5

Acknowledgments 8

1 Introduction 9

– Feasibility constraints in wider context — coordination by the direct method 12

1.1 Theses . 15

1.2 Comments on theses . 16

2 Practical problems with feasibility or implicit constraints 19

2.1 Power plant model . 19

– Physical models solving 20

– IHE modelling software 22

– Minimal running cost problem 23

– Power plant model implementation 26

– Search domain restricted in two ways 30

– Iterative solving and its impact on performance index surface 35

2.2 Microwave guide model . 37

– Modelling with QW-3D package 38

– Optimisation in QW-3D 39

– Optimal microwave circuit design problem 40

– Implicit constraints mapped into penalty function 42

– Effects of electromagnetic simulation error 43

2.3 IP services market model . 45

– Market modelling in PM 47

– Optimal product pricing problem 52

– Simple models — difficult problems: unconnected domains and multiple minima 53

2.4 Conclusions on the existence and nature of difficult problems 56

3 Survey of problems and commonly used optimisation algorithms 58

2 Contents

– Simulation-optimisation — features and classifications 59

– Simulation-optimisation — guidelines for solving 63

3.1 Gradient methods . 65

– SLP — Sequential linear programming 66

– SQP — Sequential quadratic programming 67

– GRG — Generalised reduced gradient 68

3.2 Direct search methods . 70

– Powell algorithm 70

– Nelder-Mead simplex search 71

– Simulated annealing 73

– CRS — Controlled random search 73

– COMPLEX — Constrained simplex search 74

– Tabu search 75

– EA’s — Evolutionary algorithms 76

3.3 General-purpose simulation-optimisation solvers 78

– AMPL and GAMS: various optimisation routines, one modelling language 78

– Simulation-optimisation tools 79

– Epogy: a complete design optimisation solution 80

3.4 Conclusions on others’ and the author’s approach for problem solving 81

– Proposed approach to solve simulation-optimisation problems of unknown nature 82

4 Solution of power plant set-point optimisation problem 84

– Algorithm initial selection 85

– Termination criteria selection 87

4.1 Optimisation tests and algorithms modifications 87

– CRS adaptations to simulation failures; results 87

– EA involvement and adaptations to the problem; results 91

– Gradient estimation results 94

– COMPLEX involvement and adaptation to the problem; results 97

– Hybrid algorithms construction and testing 101

4.2 Final hybrid approach verification for the plant problem 104

4.3 Interface adaptation . 108

4.4 Conclusions on proposed solving approach applicability and efficacy 109

5 Solutions of waveguide design and optimal pricing problems 112

5.1 Waveguide dimensions optimisation . 112

Contents 3

– Algorithm selection 113

– Algorithms adaptations and 2-D optimisation tests 113

– 3-D optimisation by a hybrid routine 116

– Interface adaptation 121

5.2 IP services price optimisation . 122

– Self-made difficulties are easiest to solve 123

– Unexpected simplifications can puzzle 125

5.3 Conclusions on suggested approach to optimisation problems of unknown nature 126

6 Summary; a proposal for automated simulation-optimisation problem solv-

ing 129

6.1 Motivation for automated simulation-optimisation problem approach 129

– Motivation coming from the three practical problems 130

– Motivation by existence of commercial optimisation tools 130

– Postulates for simulation-optimisation future as given by authorities 131

6.2 Simulation-Optimisation Framework proposal 132

– Selection of interface and development environment 133

– Problem features classification 135

– Optimisation routines ranking and switching 137

6.3 Summary . 139

A Stochastic optimisation 142

A.1 Stochastic approximation . 143

– Gradient estimation techniques 143

– Variance reduction 145

– Adaptation of the step size and precision 147

– Averaging 148

– Constraints 149

– Other improvements 150

A.2 Response surface methodology and other approximation techniques 152

A.3 Direct search methods . 154

– Simplex search 154

– Simulated annealing 155

– Other algorithms 155

B Parallelisation tools and techniques 157

B.1 Parallelisation of optimisation routines . 158

4 Contents

B.2 Distributed processing . 160

Bibliography 163

List of Figures 173

List of Tables 175

Symbols and acronyms used

General notations

a - scalar

a - vector or matrix1

ai - i-th element of vector a

ai,j - element in i-th row and j-th column of matrix a

{an}, {an} - sequence of scalars (resp. vectors or matrices)

aT - transpose of a

a(·) - scalar function

a(·) - vector or matrix function

ai(·) - i-th scalar function constituting vector function a(·)

ai,j(·) - i-by-j-th function constituting matrix function a(·)

aL, aU - lower bound on a, upper bound on a

â - some estimate of a

ā - mean value of a elements

∇a(·) - first order derivative of a(·), a vector function

∇2a(·) - second order derivative of a(·), a matrix function

∇ba(b, ·) - first order derivative of a(b, ·) w.r.t. b

∇2
bca(b, c, ·) - second order mixed derivative of a(b, c, ·) w.r.t. b and c

∇a(b) - first order derivative of a(b), a dim a × dim b matrix function

A - set2

¯̄A - cardinality of set A

ξ, ξ - random variable, multidimensional random variable

ξi - i-th realisation of a multidimensional random variable ξ

1Denoted always with a bold letter.

2Denoted always with a capital Latin letter.

6 Symbols and acronyms used

Symbols invariant through this dissertation

Dx - set of x’s feasible w.r.t. explicit constraints

Dy - set of feasible y’s

d - search or section direction

f(·) - performance index (a.k.a. objective function)

h(·) - implicit functional relation between x and y

ei - versor parallel to i-th axis

I - identity matrix

kS - routine termination parameter (see p. 87)

q - vector of model internal variables

R - set of real numbers

s(·) - explicit function mapping x into y

t - time (continuous or discrete)

U - random variable of uniform distribution

w - history window spanning w last evaluations of f(·)

x - vector of decision variables

x? - problem solution

y - vector of dependent variables

ε - accuracy (value used by calculations termination criterion)

εA - routine termination parameter (see p. 87)

εI - routine termination parameter (see p. 87)

Frequently used acronyms

CORBA - Common Object Request Broker Architecture

CRS - Controlled Random Search

DCOM - Distributed Component Object Model

EA - Evolutionary Algorithm

FDTD - Finite Difference Time Domain (simulation method)

FEM - Finite Element Method

ICCE - Institute of Control and Computation Engineering

IHE - Institute of Heat Engineering

IP - Internet Protocol

IPA - Infinitesimal Perturbation Analysis

IR - Institute of Radioelectronics

Symbols and acronyms used 7

Frequently used acronyms (cont.)

LP - Linear Programming

LR - Likelihood Ratio

MPI - Message Passing Interface

NSP - Network Solution Provider

PM - Pricing Module

PVM - Parallel Virtual Machine

QoS - Quality of Service

QOSIPS - Quality of Service and Pricing Differentiation for IP Services (project)

QP - Quadratic Programming

QW-3D - QuickWave-3D

RMI - Remote Method Invocation

RPC - Remote Procedure Call

RSM - Response Surface Methodology

SA - Stochastic Approximation

SIMD - Single Instruction Multiple Data (architecture)

SLA - Service Level Agreement

SLP - Sequential Linear Programming

SLR - Sequential Linearisation with Relaxation

SOF - Simulation-Optimisation Framework

SQP - Sequential Quadratic Programming

WUT - Warsaw University of Technology

Acknowledgments

The author would like to express many thanks to his supervisor Professor Krzysztof

Malinowski for his eager support and advice in all works that have led to this dissertation.

The author wishes to thank his colleagues, W. Bujalski, PhD (Institute of Heat Engi-

neering) and P. Miazga, PhD (Institute of Radioelectronics), for the cooperation in joint

projects on models presented here, and for their disinterested further help in numerical

experiments.

The author thanks his family and colleagues for all indulgence, patience, interest and

fruitful remarks.

The work reported in this dissertation on pp. 23–32, 85–86 was supported by PATIA

programme.

The work reported in this dissertation on pp. 40–45, 113–116, 53–55, 123–125, 59–65,

142–156 was supported by the State Committee for Scientific Research under grant

7 T11A 022 20.

The work reported in this dissertation on pp. 47–53 has been carried out within IST-

1999-20033 project supported by European Commission.

The work reported in this dissertation on pp. 65–80, 132–139 has been supported by the

Rector of Warsaw University of Technology under grant 503G/1031/0010/003.

Fig. 2.9 has been published by courtesy of QWED, Ltd.

Chapter 1

Introduction

The subject of this dissertation are modelling and optimisation being used jointly, namely

in optimisation problems where the performance index value is determined by the output

from a model, as outlined in Fig. 1.1. Therefore, one will not be presented with procedures of

model making or optimisation routine construction but rather with an interplay of the existing

real-life models and state-of-the-art optimisation algorithms.

Looking back at last decades of rapid computing advancement, one may share the impres-

sion that optimisation did not benefit from it so much as modelling did. At least for the class

of considered problems (i.e. with performance index based on model output) the increasing

computational power was always consumed first by the model, and then optimisation routine

took what was left over. Various expensive modelling approaches like Monte-Carlo simulation

or Finite Element Method (FEM), let alone complex equations solvable only iteratively, just

waited for available resources. This situation demanded optimisation routines serving such

models to remain cost-efficient.

In cases when models were so simple that their output computation did not even deserve

terms ‘solving’ or ‘simulation’, optimisation routines could evolve. Only then more complex

optimisation problems could be formulated and solved, usually exhausting all the resources

not used by the model. An appropriate example could be dynamic programming with its

trial points generated

as the decision variables

optimisation

routine

model output
computation routine

are passed to the model input

model output is used

by the optimisation routine

to calculate performance index value

at the trial point

by the optimisation routine

Figure 1.1: Flow of data for optimisation problems with the performance index calculated from some

model output.

10 1. Introduction

Ford-Bellman algorithm, and with its dimensionality curse.

In presence of such apparent lack of computational power for complex models and ad-

vanced optimisation algorithms at the same time, one may ask how practical model-based

optimisation problems are now solved. They are solved thanks to close integration and nar-

row specialisation of the modelling and optimisation algorithms. Close integration means that

optimisation routine is created or modified to handle just the type of performance index that

the model generates. On the other hand, the model provides the optimisation routine not

only with its output, but with a series of internal variables, and possibly also with derivatives.

Such simulation-optimisation programs are built to design optimal placement of objects, to

determine optimal buffer size in networks etc.

There exist also general-purpose optimisation solvers with their own specific modelling lan-

guages. They owe their efficiency to limitation of the languages they provide. Plugging a third

party model module into them is practically impossible. Again, limiting the number of lan-

guage constructs made possible close integration of the model computation and optimisation

routines at the cost of inapplicability for attacking nonstandard problems.

The author’s main intention is to focus on those optimisation problems where one cannot

require neither a particular open-form definition of the model nor any more data than the

mere model output. Therefore, the initial question is:

1. Are there practical optimisation problems with performance index determined by a ‘black-

box’ model?

2. How such problems are solved? How they are to be solved?

The former part of the above question does not have to wait long to be answered positively. In

fact, the whole research was spawned by a project run jointly with Institute of Heat Engineer-

ing (IHE) at Warsaw University of Technology (WUT) with the purpose to find an optimal

set-point for a power plant. The latter part of the question does not have a straightforward

answer — this dissertation attempts to be the one.

Let us put formally the problem of optimisation with the performance index dependent on

model output:

min
x

f(x, y) , (1.1)

where x is the vector of decision variables, i.e. values decisive for the process of model output

computation.1 Those values are generated during the run of an optimisation routine inside

1The terms model output computation, or shorter model computation, and short simulation will be used

here interchangeably. The term modelling refers rather to the process of model structure creation and model

parameters tuning than to the actual process of model day-to-day use.

11

the optimisation module. In order to compute the value of f(·), they are passed to the model

computation routine, inside the model module.2 The model yields a vector y of dependent

variables representing the model output, which is passed back to the optimisation routine and

used to compute f(·). If the model guarantees y to be computed for every valid x then model

computation can be written as computation of some function s

y = s(x) . (1.2)

There are, however, models with the computation failing for, seemingly, valid value of x. In

such cases it is more appropriate to present simulation as a procedure solving equation set���� ��� h1(x, y) = 0
...

hN(x, y) = 0

, in short, h(x, y) = 0 , (1.3)

with h(x, y) being a function taking value 0 if y is the output of successfully performed

simulation with input value of x.

Problem (1.1) is subject to two basic constraints

a) x ∈ Dx , b) y ∈ Dy , (1.4)

the former one imposed on decision variables and the latter one on output variables, respec-

tively. Mostly, the domains Dx for decisions and Dy for outputs take the form of simple

hypercubes

a) Dx = {x =

���
�

x1

x2

...

�	��

 : xL,1 ≤ x1 ≤ xU,1, xL,2 ≤ x2 ≤ xU,2, . . . } ,

b) Dy = {y =

���
�

y1

y2

...

� ��

 : yL,1 ≤ y1 ≤ yU,1, yL,2 ≤ y2 ≤ yU,2, . . . } ,

(1.5)

with xL, xU, yL and yU being vectors of lower and upper bounds for x and y. Regardless of

the internal workings of an optimisation routine, the only means of using the model is to feed

it with x and wait for y. Therefore, it is desirable to consider the practical effect (1.4b) has

on the search domain. A relatively simple constraint (1.4b) together with (1.2) or (1.3) define

additional, implicit constraints to (1.1). Moreover, problem may be additionally constrained

2The term model module, i.e. the name of a software module which carries out model output computation

operations, will be used interchangeably with short simulator.

12 1. Introduction

−5 0 5 10 15
−5

0

5

10

15

x
1

x 2

−5 0 5 10 15
−5

0

5

10

15

x
1

x 2

−5 0 5 10 15
−5

0

5

10

15

x
1

x 2

Figure 1.2: Left: The search domain with a region (indicated with dark gray) where the solution of (1.3)

does not exist and feasibility constraints are violated. Middle: As on the preceding plot, and with a region

(gray) where implicit constraints only are violated. Right: As on the preceding plot, and with a region

(light gray) where the explicit constraints are violated. The region feasible for optimisation problem is

therefore the white one.

by such x ∈ Dx for that (1.3) cannot be solved. The optimisation problem (1.1, 1.3, 1.4) is

thus subject to three types of constraints:

1. Explicit — defined by (1.4a);

2. Implicit — defined by (1.4b) together with (1.2): {x : s(x) ∈ Dy} —

or defined by (1.4b) together with (1.3): � x : ∃y∈Dy
h(x, y) = 0 � ;

3. Feasibility — defined solely by (1.3) — {x : ∃yh(x, y) = 0}.

Although implicit constraints define just a subset of feasibility constraints, it is important to

distinguish them: when implicit constraints are violated, one still has some reliable value of y;

when the violation of feasibility happens, there exists no y whatsoever. Analytical calculation

of sets of x satisfying implicit or feasibility constraints is impossible due to the advanced

numerics underlying s(·) and h(·). There is no reason to expect those sets to be convex or

compact. An exemplary shape those sets may take is shown in Fig. 1.2.

Feasibility constraints in wider context — coordination by the direct

method

It should be emphasised that feasibility constraints, the most confusing and troublesome ones,

are not specific only to simulation-optimisation problems. Let us present here another class of

13

problems constrained in such way; those are optimisation problems with coordination by the

direct method. The reader can find their detailed description in [40, pp. 36–37] or in [62].

Optimisation with coordination, or hierarchical optimisation, can be applied if a problem

exhibits hierarchical structure. The hierarchy of the problem can be a natural consequence

of hierarchical structure of the underlying model; it can also be handled ‘technically’ — as

a set of problem properties, without investigating their reasons. In any case, the performance

index to be handled by the direct method must be expressed as monotonic function Ψ(·) of

performance sub-indices f1(·), . . . , fN(·)

f(x, y) df= Ψ (f1(x, y1), . . . , fN(x, yN)) , y =

���
�

y1

...

yN

�	��

 . (1.6)

The problem of (1.6) minimisation can be then decomposed into a hierarchical decision problem

with N local optimisation problems of finding

y?
i = arg min

yi∈Dyi
(x)

fi(x, yi) (1.7)

and the coordination problem3

min
x

Ψ (f1(x, y?
1), . . . , fN(x, y?

N)) . (1.8)

One of practical applications of such hierarchical optimisation structures is the control of

a complex system, i.e. a system made of (possibly interconnected) blocks. Functions fi(·)

define goals for local controllers at block level, and Ψ(·) defines the global goal designed so

as to not antagonise local controllers. The vector x of coordination variables specifies the

desired values of block outputs as well as determines resources Dyi
for each controller. Under

so defined conditions, local controllers do their best to provide control law optimising fi(·)’s.

There exist evident analogies between hierarchical optimisation and simulation-optimisation

structures. They are presented in Fig. 1.3. The optimisation routine gets replaced by the coor-

dinator (doing the same thing), and the simulator gets replaced by several local optimisation

routines. However, the trouble with constraints remains the same. Particularly, feasibility

constraints may equally well jeopardise operation of hierarchical optimisation. Note that, for

certain x’s some of Dyi
’s may become empty, resulting in infeasible optimisation problem (1.7)

definition and in no y?
i produced altogether — which is essentially the same situation as in

3Only the layout of hierarchical optimisation is given here to make the reader aware of the two problems

similarities, and therefore to justify the need to investigate such problems. For more on hierarchical structures,

see [40].

14 1. Introduction

y

optimisation

routine

simulator
x

N

1 1
local problem 1

y x

local problem N

coordinator

y x N

Simulation-optimisation Hierarchical optimisation

optimisation — (1.1) ∼ coordination — (1.8)

simulation — (1.2) or (1.3) ∼ local problem — (1.7)

Figure 1.3: Data flow in simulation-optimisation (left) and in hierarchical optimisation (right) problems.

The main differences consists in the number of modules serving performance index calculations (one resp.

many) and in those modules nature (simulation resp. optimisation). Below are given the numbers of

equations describing equivalent modules in both cases.

simulation-optimisation case. It is impossible to prevent this by requirement for the coordi-

nator to take into account the effects all x’s have on Dyi
’s. One of the reasons is such effect

is costly to compute, and comes into light only as the result of emitted coordination signals.

Neither it is possible to assume that a good measure of the degree of Dyi
violation is available:

consider system control example; a resource insufficient to carry out control may even result

in loss of stability.4

In the course of his doctorate studies, the author was trying to answer the question stated

above — are optimisation problems with performance index determined by some impenetra-

ble model, and with the three types of constraints, really existent and practically solvable?

In general, the answers received from the literature were negative. Many authors made it

the precondition of problem solving that insight as deep as possible must be made into the

nature and the specifics of a system being modelled. Such insight might then give hints for

construction of an optimisation method trimmed exactly to the problem.

4Inconveniences caused by feasibility constraints in the direct method can be avoided by using coordination

by the price method where Lagrange function is formulated as the objective, and the signals emitted by the

coordinator to local problem solvers are the Lagrange multipliers. However, this is done at the cost of more

restrictive assumptions for the performance index: f(x, y) = � N

i=1
fi(x, yi). Moreover, this approach does

not guarantee solution optimality if duality gap occurs [62].

1.1. Theses 15

As regards possibility of solving such problems without interfering into the model module,

practice slowly yielded positive response for particular encountered problems. The experience

acquired while dealing with those problems may become the base for a methodology. The

author distinguished common features of problems and common actions taken to solve them.

Backed by a number of practical applications, he dares to generalise and to summarise the

results of his work in theses that follow in Section 1.1.

1.1 Theses

1. There exist practical optimisation problems where the performance index value is based

on output values obtained from some autonomous model fed with the decision variables.

The coupling between simulation and optimisation module is weak, i.e. no more than de-

cisions and model output are exchanged. Moreover, in general no knowledge is available

about the nature of the system defined by the model. Formally, the optimisation prob-

lem is defined by (1.1), the action of model output computation is defined by (1.3), and

the constraints are defined by (1.4), where Dx ⊂ Rdim x and Dy ⊂ Rdim y. Practically,

such problems can present difficulties because of

• the fact that constraints (1.4b) on y additionally and implicitly constrain the do-

main in unpredictable way due to complicated nature of (1.2) or (1.3);

• the fact that the process of computing the model output may be vulnerable to

failures resulting from the modeller defects, but also representing forbidden states

of the object being modelled.

2. Problems defined in Thesis 1 are in position to be solved by appropriate numerical

algorithms run by a computer. Such algorithms have hybrid structure, i.e. they consist

of a couple of relatively simple routines that are activated in the course of optimisation

whenever their characteristics match best a particular stage of optimisation, and when

they promise best results. Switching is performed between those component algorithms,

i.e. at some point another routine takes over the optimisation task, utilising results

obtained by its predecessor. To accomplish this effectively, the following actions ought

to be carried out in algorithm design phase for every optimisation problem:

(a) Appropriate component routines have to be chosen out of candidate routine set.

The selection should be based on any initial knowledge of the problem, routines

efficacy and availability of distributed computing environment.

16 1. Introduction

(b) Modifications of the selected component routines must be made if it turns out that,

despite the selection based on all a priori information, the routines are not able to

cope with the problem fully. In most cases those modifications concern building in

the support for nonconvex optimisation domain.

(c) Reasonable criteria of switching between component routines must be established.

Those criteria base on the idea of progress understood not solely as the improvement

of performance index but they may take into account such parameters as dispersion

of trial points pool maintained by an algorithm etc.

(d) If available, one should make use of parallel or distributed computing environment

to accelerate, coarse by their nature, calculations.

3. It is possible to classify optimisation routines and problems by possession of attributes

from a fixed set. Using such classification, one can try to perform automated selection of

component algorithms that suit best the problem. Therefore, one can, with considerable

confidence, extract a set of candidate component routines that will form a base for solving

most problems. Furthermore, it is possible to hand the burden of quantitative definition

of terms ‘progress’ and ‘effort’ over to the user, and to come up with a general-purpose

environment for simulation-based optimisation with universal switching rules.

1.2 Comments on theses

The collective comment on all the theses is that surely they are not mathematically provable.

What one can do is, for thesis with ‘there exist’ quantifier (Thesis 1), to indicate concrete

real-life examples of optimisation problems and, for theses claiming ‘for all’ quantifier (Theses

2 and 3), to provide a number of convincing examples.

In Thesis 1, the question of constraints is particularly due an early comment. Implicitly

constraining the search domain by introducing relatively simple bounds for y is a well-known

fact. However, the critics can be put on the other source of constraining the domain, namely

the failure of model output computation. Although, from the mathematical point of view,

there is nothing unusual in violation of (1.3), a common sense and good engineering habits

prompt to protest against flawed software incapable of passing a word of warning to the outer

world.

In most cases this happens just because of the engineering approach that underlay the

model construction. There may exist senseless x that makes the model stray away, hang or

crash. Such x would never have passed the mind of an engineer skilled in the operation of

modelled object. However, such x is a trial point generated by a general-purpose optimisation

1.2. Comments on theses 17

routine. Often, detecting the set of correct x’s that do not result in simulation failures would

cost more than the optimisation process itself. Similarly, tracing all the posts in model code

with aim to warn of the danger is costly, if possible at all. Chapter 2 gives further explanations

and discussion on this topic.

Thesis 2 proposes a methodology of attacking problems defined in Thesis 1. All the sug-

gested activities 2a–2d lead to the construction of an algorithm capable of solving a given

problem. It must be stressed that, unlike suggested in literature, the resulting approach does

not attempt digging every possible bit of information from the model (or from its creators).

The suggested methodology remains low-cost in application to a problem. (Obviously, it turns

out to be to some extent high-cost at operation.) Neither the proposed approach aims at cre-

ation of a universal solver. The methodology takes the middle way: it collects pieces of others’

algorithms only to put them together in a hybrid tool roughly adapted to a particular problem.

Such approach is justified if off-the-shelf specialised simulators are to be embedded in some

optimisation scheme. For more on this topic, see Section 2.2.

At the very start of component algorithm selection, in Thesis 2a appears the notion of

‘candidate routine set’. The survey of algorithms recognised for simulation-based optimisation

takes place in Chapter 3 and in Appendix A. The author’s effort was put to cover all the

fields where ‘simulation’ and ‘optimisation’ keywords appear together, to give an outlook as

to where most burden and workload is currently placed.

Thesis 2b handles the case when complications appear during the operation of the con-

structed algorithm. They are inevitable, at least thanks to nonconvex or even not connected

search domain that could be created by constraints on y. Of the initial set of candidate al-

gorithms, possibly only random search could support such constraints in its original shape.

Rather than limiting oneself to random search only, it is worth to take more optimistic course,

and to accept little more demanding but still simple routines in good belief that modifica-

tions will not be necessary. Should the problems occur, only then proper workarounds and

patches (like appropriate repair algorithms) have to be developed. Chapter 4 presents how

such approach worked in practice.

The essence of Thesis 2c is ‘if the currently used component routine has run out of steam,

start another one from the point where the old one reached’. What gives most trouble here

is to determine whether the current algorithm has lost its efficiency permanently, or is just in

the exploration phase? Exemplary switching criteria are given through Chapter 4, Section 5.1,

and Section 6.2.

Thesis 2d underlines benefits coming from running the optimisation in parallel. Costly

simulation underlying evaluations of f(·) makes the computation coarse-grained, and therefore

18 1. Introduction

adequate for parallelisation. In the considered situation, with the simulator being an opaque

piece of software, one cannot actually speed up a single simulation. The only way to accomplish

parallelism is through multiple simulations run at the same time to compute f(·) at various

trial points — i.e. through parallelisation of the optimisation routine. A number of such

routines are available and, since in any case one is to make effort of creating an interface

between optimisation routine and simulator, it is worth to take pains to interface parallel

routines. This thread will appear through Appendix B.

Thesis 3 presents several generalising conclusions the author tries to draw out of the prac-

tical examples whose nature was described in Chapter 2 and their solution in Chapter 4 and

Chapter 5. Systematisation of optimisation problems is carried out in Section 6.2 that leads

to a set of basic properties a simulation-optimisation problem may, or may not, present. At-

tributing a problem with those properties, as well as defining the measure of progress and

computation effort (i.e. all the things that caused most troubles in Chapter 4 and in Sec-

tion 5.1) are ceded to the user. Having accepted this, the user is presented with a prototype

of simulation-optimisation environment that, hopefully, will do most of the hand work (ap-

propriate algorithm selection and switching) described in Chapter 4 and Chapter 5.

This dissertation is arranged as follows. Presentation of practical simulation-optimisation

problems with feasibility or implicit constraints is given in Chapter 2. The overview of algo-

rithms widely recognised by other authors for simulation and optimisation problems is pre-

sented in Chapter 3 and Appendix A. Solving of the practical problems is covered in Chapter 4

and Chapter 5. Propositions of problems systematisation, and of a framework for automatic

classification and application of selected algorithms towards a problem, are given, together

with the concluding remarks, in Chapter 6.

Chapter 2

Practical problems with feasibility

or implicit constraints

All reasoning and experimentation reported in this dissertation is done in context of three prac-

tical problems. Those problems description, given in subsequent sections, focuses strongly on

difficulties they present to optimisation. In order to provide appropriately detailed problem

description, some results from optimisation phase have to be revealed here beforehand. There-

fore, the following material is partially the author’s original contribution. For various reasons,

diversified attention and effort was given to find solutions of the considered problems. The

most exploited one is the power plant problem whose solving occupies whole Chapter 4. So-

lution procedures for the two other problems, as no so prominent, are enclosed collectively in

Chapter 5.

2.1 Power plant model

In this section, the practical problem of industrial power plant set-point optimisation is pre-

sented. This problem was reported and solved with the support of IHE. That institute provided

the author with appropriate modelling software and professional assistance.

The problem of power systems modelling has been for long present in the community

of power engineers, and reflected in international as well as in Polish, literature [89]. It

is a complex task indeed since the number of elements in the modelled object may reach

thousands,1 they are of various nature and, usually, of considerable complexity. Two main

approaches exist to the model construction. The first is to establish a polynomial model of

appropriate order for an element being modelled, and to identify its parameters given sufficient

1The works towards effective modelling of such complex systems are currently in progress in IHE.

20 2. Practical problems with feasibility or implicit constraints

amount of measurement data. The second approach makes use of the knowledge of element

specifics, expressed in the form of a number of equations. Those equations may span various

branches of science (e.g. thermodynamics, hydrodynamics, mechanics etc.) and attempt to

model element behaviour as a function of some parameters known already at the stage of

element design and construction.

The advantage of polynomial models is their simplicity and easiness of tuning — provided

that the data for tuning are available. Unfortunately, while some of those data are available

in great amount, some other are dramatically few or they are very difficult to be obtained

from the living system.2 An example can be measuring of temperature and pressure through

a group of turbine stages; it is practically impossible due to extreme conditions there. Also

the accuracy of such measurement is insufficient.

The advantage of a so-called physical model is absence of the requirement for extensive

data collection to assure proper tuning. However, in order to model the system accurately,

one has to develop sometimes highly complex mathematical formulae. This approach is prone

to huge errors if the knowledge underlying formula construction is inadequate. Moreover,

complexity of model solving, apart from the computational burden, has serious consequences

in model vulnerability. Those consequences will be presented in throughout the section.

Physical models solving

The general structure of a coal industrial power plant does not differ from that of other power

plants. It comprises of boiler, turbine and regeneration blocks [75, p. 111 and on], with

water circulating through them in cycles. Attempts to construct numerical models of such

systems or their parts are reflected in Polish scientific press for more than three decades. The

particular thread leading to the model developed by IHE can be found in [58]; the authors

report a mathematical model of a turboset (i.e. turbine, generator and heat exchangers).

A physical model like the one reported is usually formed by a system of equations���� ��� r1(q) = 0
...

rN(q) = 0

(2.1)

representing physical interactions taking place in the system. System (2.1) is in fact system

(1.3), but expressed in more detailed way; here, r1(·), . . . , rN(·) denote functions of model

2A similar case with imbalanced amount of data for proper model tuning is Internet Protocol (IP) services

market model, described in Section 2.3. For the discussion on that model construction and tuning, see [9].

2.1. Power plant model 21

turbine stage
last

turbine stages
group of

distribution
steam

turboset

power block

boiler

regeneration turbine generator cooling
system

I

II

III

IV

Figure 2.1: Levels of generality that can be determined in power system modelling — from most general

(I) to most detailed (IV).

internal variables vector q. (The vector q contains, in particular, also the model input x and

the model output y.)

The equations in (2.1) can be classified into three categories, depending on the modelled

phenomena. They are: balances, states of turboset elements and properties of the working

medium [74]. Equations of the first kind are always linear and are precisely determined by

the graph of connections between the turboset elements. Complexity of the other equations

depends on the type of elements being modelled; they are mostly nonlinear and, especially for

second kind elements, troublesome in formulation.

System (2.1) has a number of degrees of freedom, and formally it is up to the user which

elements of q will be adopted as the model input variables. However, careful selection of

internal variables that will be used as the model inputs greatly reduces the solving time and the

quality of numerical solution, if it is not conditioning the simulation success altogether. Two

methods are proposed to solve system (2.1); the first is supported by the authors cited above

and consists in decomposition of it into parts that could be solved sequentially or iteratively.

Groups of equations to be solved sequentially form autonomous subsystems of (2.1), and are

solved by consecutively substituting unknown variables. Groups of equations to be solved

iteratively, are solved by an algorithm computing subsequent solution approximations until

the desired accuracy is reached. A single iteration n of such algorithm may be written as

follows

q̃n+1 = q̃n + r̃ (q̃n) , (2.2)

where q̃n is a subvector of q representing internal variables subject to iterative solving. Func-

tion r̃(·) represents some procedure calculating corrections to be made to q̃ in order to balance

the relevant part of (2.1). The algorithm (2.2) requires some initial q̃0 to be specified. So,

22 2. Practical problems with feasibility or implicit constraints

in this method some equations are solved once, some others are solved repeatedly, until the

desired accuracy is reached. In complex power systems one can figure out a hierarchy of com-

ponents; this is reflected by proposition [74] of hierarchy in the models, as in Fig. 2.1. In terms

of models, complexity means the number of equations of the order of hundreds or thousands,

and hierarchy means the solving procedure containing many nested loops.

Another method of solving (2.1) was proposed in [114]. It tends into the opposite direction;

the author aggregates the model where possible to end up with a system of less than twenty

equations. Only then he is able to express the task of finding the solution as an optimisation

problem

min
x

N�

i=1

r2
i (q) , (2.3)

with x being decision variable subvector of q. Adapted quasi-Newton optimisation method

is used to solve (2.3). Here also, setting appropriate initial values of some internal variables

conditions prompt and successful optimisation.

IHE modelling software

The modelling software adopted and used by the author was created in IHE with an inten-

tion to assist system engineers and operators in predicting the effect that changes of selected

parameters would have on the whole system operation in the steady state, i.e. when all the

transient effects have ceased. Components and behaviour of IHE software, prevalently de-

manding user interaction, allow to qualify it as a complex support tool for manual working

point selection. The software contains also a graphic editor allowing to create from the scratch

the graph representing a power system, using elements of pre-defined properties from the li-

brary. Properties of those elements can next be adjusted. A model created this way is fed via

file interface into the actual model solver.

Element types, connections and properties determine set (2.1) unambiguously. To solve

it, the sequential-iterative method is applied. Since the ‘solving path’, i.e. the order in which

the equations are grouped and solved can have tremendous impact on efficiency, pre-solving

routine is written that, with operator assistance, determines the most efficient grouping of

equations for a given set of internal variables selected for the model input x.

In the course of model solving, the algorithm (2.2) is executed in the parts requiring

iterations. Let us consider an example with qT = [q1 q2 q3] and with q3 as the decision

variable, xT = [q3]. Let r1(·) = r1(q2, q3) and r2(·) = r2(q1, q2) be some linear and nonlinear

functions, respectively. Then the solving procedure would require user to specify the initial

value of one internal variable that will be computed iteratively, q1 in this case, in order to

2.1. Power plant model 23

start computations. Next, the solving algorithm would proceed as follows:

Step 0: Solve r1(q2, q3) = 0 for q2 once;

Step 1: Calculate r2(q1, q2); if | r2(q1,q2)
q1

| < ε then stop, else set q1 := q1 + r̃(q1, q2) and

go to Step 1.

The construction of r̃(·) can present itself as a difficult task since r̃(·) is to give the direction

of adjustments necessary for q1 in order to balance r(·). In general, r̃(·) has to do with the

gradient ∇q1
r2(·), which is not always existent or computable. It is the many-year experience

that resulted in working r̃(·)’s in IHE simulator.

The approach to the construction of functions ri(·) which are atoms for modelling elements

behaviour, centered around the idea of nominal working point. Such a working point exists

for many power system elements. The nominal working conditions have therefore become the

starting point for calculation of changes of working conditions as functions of setting of some

parameters (or model inputs) off their nominal values. The immediate consequence of such

incremental, or small-signal modelling approach is that the model is valid only in a certain

neighbourhood of the nominal working point. Yet, considering complexity of some elements,

one cannot expect a nice locally linear model to emerge as a compensation. Taking group

of turbine stages as an example, the modelling formulas for the flow below and above the

nominal value are of completely different type. The implications are therefore threefold:

• For certain values of parameters far enough from the nominal ones the model ceases to

be accurate;

• For values of parameters still more away from the nominal the mathematical formulas

may not be computable;

• Even for parameters in the valid range, the model can be highly nonlinear.

Of course, in the case of the simulation software being operated by a skilled, experienced and

trained person, none of the above disadvantages has to be taken into consideration. However,

should the simulator be used by a general purpose optimisation module, all of the above

implications are of importance.

Minimal running cost problem

In a coal power plant the energy from coal combustion in a boiler is received by water, which

is the working medium. The water, in the form of steam, goes through other devices of the

plant, giving away its energy and changing its parameters. The most complex receivers of

24 2. Practical problems with feasibility or implicit constraints

steam are turbines of turbosets. In a turbine the steam gradually decompresses and cools

down on a series of propellers in the three turbine parts (high-, medium- and low-pressure),

spinning them. Usually, it is possible to let out some steam of various parameters at several

extractions along its passage through the turbine. The output from a turbine are mechanical

power, converted subsequently by the generator into electricity, and heat energy carried by

steam flows of different parameters. The steam, to be warmed again, has to be regenerated, i.e.

condensed in condensers, cooled down in heat exchangers, deareated and pumped, under high

pressure, again into the boiler. Big systems may consist of many such power blocks (boiler–

turbine–regenerator), interconnected through collectors to ease working medium distribution

in order to react to e.g. changing power demand or to failures.

Apart from decompression, hot steam can also be used for warming. Its most popular

application is to deliver heat to residential areas. Last but not least, it is used to warm up

materials during production cycle in factories. In fact, this is the purpose industrial power

plants are built for. This is also the case for the factory of our interest. The main goal of its

power plant is to warm up materials for chemical reactions up to exact temperatures. The

diagram of the considered plant is given in Fig. 2.2. The factory needs three types of steam of

exact pressure, temperature and flow, and one of partially adjustable flow. Steam of desired

parameters comes from taking and mixing steam from various points in the installation. It

must be emphasised that the production of this ‘industrial steam’ is the absolute priority of the

plant; electricity is just a side product. It is worth noticing that some of the parameters of the

‘industrial steam’, formally belonging to model input variables, remain fixed during a single

optimisation run, and therefore are treated rather as model parameters than as the decision

variables. They remain outside the vector x as well as a number of other input variables whose

values are pre-set by a competent operator and are constant.

The factory management is interested in minimising running costs of the power plant by

setting its steady-state working point appropriately. The running costs are defined as simple

balance of cost of coal consumption, cost of pumps operation and the gains from selling the

electric power;

f(x, y) = cC

dim yC�

i=1

yC,i + cE

�
dim yP�

i=1

yP,i −

dim yE�

i=1

yE,i � , (2.4)

where yT
C = [yC,1 yC,2 . . .] is the vector of coal flows (expressed in kg/sec), yT

P = [yP,1 yP,2 . . .]

is the vector of power consumption by plant pumps (expressed in kilowatts), yT
E = [yE,1 yE,2 . . .]

is the vector of power levels in generators, and cC and cE are coal and electricity prices, re-

spectively. The need to adjust the plant working point such that (2.4) is minimised emerges

several times a day, mainly because of the changing steam demands following the produc-

tion schedule, usually known in advance. The performance index f(·) may also be affected by

2.1. Power plant model 25

Figure 2.2: The diagram of industrial power plant at ‘Janikosoda’ chemical works in Janikowo as gener-

ated by IHE modelling tool. (Efficiencies of selected devices are given in italics.)

flow that is a decision variable (with the decision variable index given beside). industrial steam outlet. • flow

or power level contributing to positive f(·) component in (2.4). ◦ power level contributing to negative f(·)

component.

26 2. Practical problems with feasibility or implicit constraints

changing electricity price cE — actually this is the case in Poland due to the recent regulations

in law — but those changes are currently not big.

As it was mentioned above, from the formal point of view (if the model has unambiguous

solution y for an x), the decision which internal variables are to be adopted as the model input

is irrelevant. In practice, to secure efficient model computation, they are selected by a skilled

engineer. Those selected for the considered optimisation problem are indicated in Fig. 2.2 and

listed in Table 2.1. The choice may seem uncomfortable — one might want to include yC, yP

and yE in x first — but that is the best one can do to simplify calculations.

The main purpose of constraints formulation is to curb the range of decision variable

values in attempt to approximate roughly the set a trained human operator would consider

the reasonable model inputs. Moreover, upper and lower bounds on x bracket the nominal

values of the corresponding internal model variables, and so reflect also the nature of modelling.

These explicit constraints are summarised in Table 2.1.

All the internal model variables are available to the outer world as the model output, y = q.

All they are subject to inequality constraints of the same type, yi ≥ 0 , i = 1, . . . dim y. This

prevents the model from entering evidently invalid area. As it will turn out, such constraint

specification, oriented to secure proper working conditions of every single element modelled,

does not take into account interactions of elements and therefore does not prevent situations

when modelling formulae domain is violated and no output is produced.

A special value for a decision variable determining flow that in certain cases lies outside

Dx, is zero. In reality zero flows are absolutely correct and denote the fact that a part of the

system is off. Deciding which part of the system has to be working for satisfying the current

demands is an important class of problems power industry, called Economic Load Dispatch

(ELD) problems. In terms of problem formulation it leads to mixed programming problem

(i.e. optimisation with decision variables taking values both from continuous and discrete sets).

Such problems are not considered in this dissertation.3

Power plant model implementation

IHE model of the considered industrial power plant is made of 67 elements and 539 internal

model variables representing flows, entalpies, pressures, temperatures, working parameters,

efficiencies and power levels. (Part of those are slack variables, i.e. they serve to express

3Another interesting class of problems directly related to the considered one is not only what should the

new optimal working point be, but how to switch to it. Specifically, what should be the trajectory in Dx that

carries the system slowly (i.e. discarding the transient effects) to the new point, possibly skirting regions where

constraints are active. This class of problems will neither be considered here.

2.1. Power plant model 27

Decision Internal model Lower Upper Description

variable variable bound bound

name name

x1 q18 0 5 steam flow through reduction valve 1

x2 q27 0 2 steam flow from second steam bleeding of turbine 5

x3 q28 0 2 steam flow from second steam bleeding of turbine 4

x4 q29 0 2 steam flow from third steam bleeding of turbine 5

x5 q30 0 2 steam flow from third steam bleeding of turbine 4

x6 q35 0 1 steam flow through reduction valve 2

x7 q36 19.8 24.2 steam flow powering turbine 1

x8 q37 9.9 12.1 steam flow powering turbine 2

x9 q38 9.9 12.1 steam flow powering turbine 3

x10 q44 21.15 25.85 steam flow from turbine 4 output

x11 q47 0 1 steam flow through reduction valve 3

x12 q51 16.2 19.8 steam flow from first steam bleeding of turbine 4

x13 q52 0 10 steam flow from first steam bleeding of turbine 5

x14 q54 0 4 steam flow from turbine 1 taken to reduction valve 4

x15 q58 0 4 total steam flow through reduction valve 4

x16 q81 31.5 38.5 water flow to boiler 5

x17 q83 16.2 19.8 water flow to boiler 2

x18 q84 15.3 18.7 water flow to boiler 3

x19 q85 16.2 19.8 water flow to boiler 1

x20 q96 13.77 16.83 steam flow from turbine 5 to collector (element #43)

x21 q112 13.77 16.83 adjustable ‘industrial steam’ flow

Table 2.1: Decision variables for the problem of industrial power plant set-point optimisation.

28 2. Practical problems with feasibility or implicit constraints

Decision Internal model Lower Upper Description

variable variable bound bound

name name

x1 q22 0 5.55 flow from first steam bleeding of turbine 1

x2 q23 0 5.55 flow from first steam bleeding of turbine 2

x3 q24 0 8.5 flow from second steam bleeding of turbine 2

x4 q25 0 8.5 flow from second steam bleeding of turbine 1

x5 q26 50 60 steam flow from turbine 2 output

x6 q27 50 60 steam flow from turbine 1 output

x7 q28 0 5 steam flow to heat exchanger

x8 q29 0 5 steam flow to heat exchanger

x9 q35 48 80 water flow to boiler 1

Table 2.2: Decision variables for the test problem carved out of the original power set-point optimisation

problem (cf. Table 2.1).

some inequality modelling formulae as equalities.) The original model input is a vector of 125

variables. Out of them, 21 inputs were adopted for decision variables vector x; the rest are

assigned fixed values.

For the preliminary stage of research a simpler model has been created, which is basically

a part of the original model. The original model will be since then referred to as ‘plant model’

and the simplified one — as ‘test model’. Test model properties are to be recognised first, and

the plant model is to be approached with the rough methodology and experience gained from

the test model; that is why it is right to present here both models.

The test model consists of two coal boilers powering, through a collector, two three-stage

turbines. The regeneration block is simplified, but still there are three steam receptions for

industrial purposes. The optimisation problem is defined analogously to the one for plant

model, with the exception for decision variables whose specification is given in Table 2.2 and

the absence of pumping costs. The diagram of the test model is presented in Fig. 2.3.

The model solver was implemented in Fortran language and equipped with file interface.

Since it was designed to assist a human operator, the solving algorithm runs interactively,

e.g. reporting excessive number of iterations while running (2.2), and asking for a decision.

As it was mentioned above, the way the model solving is designed and implemented makes

it possible to select such decision values that the output vector y satisfying (1.3) cannot be

found. Such behaviour was not expected and came out only in the course of work for coupling

both models with the optimisation module. However it is desirable to reveal certain facts

2.1. Power plant model 29

water collector

5 6

7 8

9

Boiler 1 Boiler 2

steam collector

valves
reducing

steam receptionsheat exchangers

TG2 TG1

.83

.7
5

.7
5

.7
5

.93

.7 .7 .7

x x xx

x

xx

x

x

12 3 4

Figure 2.3: The diagram of test power system that is a simplified version of the plant model. The diagram

legend is as in Fig. 2.2.

30 2. Practical problems with feasibility or implicit constraints

already in this section.

After a deeper model examination it turns out that the reasons for the simulation failure can

be twofold. The first are unreachable termination criteria for model internal loops. Normally,

equations in (2.1) are constructed so that the actual value r̃(q̃) gives a hint by what value some

elements of q should be adjusted to lessen the imbalance. Apparently, for certain x’s those

signals are inadequate to the needed changes of q. The second reason are the mathematical

formulae constituting the model — particularly the formulae for steam flow capacity of turbine

[75, pp. 72, 125], where there may appear invalid arguments to square root functions, causing

the software to report a numerical exception.

A foreseeable potential problem is that for those cases when the simulation is successful,

the properties of performance index f(·) based on simulation output are not good enough to

attack the problem with wide range of optimisation routines. This is because a model solution

is not exact but approximated in a series of iterations. Such approach, with nonzero error

margin ε is prone to introduce sort of harshness to hypersurface of f(·).

The following paragraphs present the adverse effects that failures and implicit constraints

have on the search domain, and the adverse effects iterative solving procedure along with

model internal switching have on the performance index itself.

Search domain restricted in two ways

In the course of research for a robust and efficient approach to solve the problem it turned out

that implicit and, most of all, feasibility constraints adversely affect the set of feasible decisions.

As the result, some optimisation methods designated for this task have to be discarded, and

some others have to be adapted. Particularly, attempts to estimate performance index gradient

at various points chosen randomly from Dx revealed the importance of feasibility constraints.

For the sake of speed and convenience of lesser dimensionality, gradient estimation test

have been performed initially for the test problem as the one containing all the characteristic

and troublesome elements, representative for full models: turbine, boiler, heat exchanger. The

tests were performed for decisions taken randomly with uniform distribution from Dx as well

as in the neighbourhood of some suboptimal initial working-point, selected manually and pro-

posed by IHE. In cases where gradient estimation procedure (based on finite differences of f(·)

in the neighbourhood of x) detected anomalies, a number of two-dimensional cuts trough Dx

at that point, in versor directions, were generated. Such a typical two-dimensional slice of the

decision domain in the proximity of the optimum is presented in Fig. 2.4. Cuts were made by

methodical invocation of simulation routine for points across the cutting plane, with purpose

to register areas where (1.2, 1.5) or just (1.3) are violated. The areas visible in Fig. 2.4 are

2.1. Power plant model 31

1.5 2 2.5 3 3.5 4 4.5

52.5

53

53.5

54

54.5

55

55.5

56

x
8

x 5

Figure 2.4: A cut through Dx in the neighbourhood of the test problem solution. Area where all

constraints are satisfied is marked with light gray colour. Area where implicit constraints are violated is

marked with dark gray colour. Area where feasibility constraints are violated is marked with black.

32 2. Practical problems with feasibility or implicit constraints

made of overlapping dots, and dot colours represent simulation result. The figure was drawn

deliberately as raster and not as contour plot to emphasise the discrete nature of sampling

performed over Dx. What one can see is that the considerable part of the cut is composed of

x’s that violate implicit and feasibility constraints. Fortunately, the gray area where implicit

constraints only are violated lies like a buffer zone that coats the region where simulation

fails. Moreover, the borders between areas are seemingly straight and potentially support-

able by gradient projection or repair routines of optimisation algorithms. As regards both

observations, more profound search for anomalies revealed that areas generated by feasibility

constraints are not always that straightforward.

The more profound search for anomalies in whole Dx consisted in attempts to estimate

gradient at 100,000 trial points chosen randomly from whole Dx. The gradient estimation

procedure reported feasibility constraints active in 1500 out of those 100,000 cases, which

makes the ratio of 1.5%. Considering the number of samples against the model dimension,

this ratio is not very reliable, but it confirms the fact that feasibility constraints really get

activated and that encountering a region where the simulation fails is quite probable for

a single optimisation run. The regions that feasibility constraints may generate in the test

problem case can turn out to be unexpectedly complicated, on the contrary to what Fig. 2.4

suggests. Some of them are presented in Fig. 2.5. First of all, they can split x’s lying on

an arbitrary plane cutting Dx into several unconnected subsets, as presented in Fig. 2.5a–c.

Those subsets are convex and have straight borders, but one cannot assure their shape or

unconnectedness in general, in all nine dimensions of the test problem. The black areas of

violated feasibility constraints may possibly vanish in some neighbouring parallel plane, or may

get broken as shown in Fig. 2.5d. Another conclusion emerging from that particular figure is

that the black regions do not have to have straight borders; the broken line in the considered

graph is slightly warped downwards. Two more graphs, in Fig. 2.5e–f, reveal other types of

singularities introduced to Dx by feasibility constraints. They are just separate points, or

curves composed by them, that appear periodically. Their regular shape may be connected in

some way with the iterative nature of the simulation process and its stopping criteria, although

their apparent zero-measure is inexplicable.

Surprisingly big potential of the test problem to complicate optimisation process is a good

excuse for extensive checking of plant model constraints. Similar gradient estimation attempts

were made and — naturally enough — simulation failures occurred. Results of the tests are

presented in analogous form in Fig. 2.6. They bring two new important observations. The

first is that the feasible region may be bounded directly by the feasibility constraints, with no

‘buffer space’ made of implicit constraints in between (cf. Fig. 2.6a–b). The second observation

2.1. Power plant model 33

a)

1.8 2 2.2 2.4 2.6
3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

x
2

x 1

b)

6.6 6.8 7 7.2 7.4

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

x
4

x 3

c)

1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
2

x 3

d)

2.4 2.6 2.8 3 3.2

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

x
1

x 4

e)

2 2.2 2.4 2.6 2.8
50

50.1

50.2

50.3

50.4

50.5

x
4

x 6

f)

52.6 52.8 53 53.2 53.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
6

x 1

Figure 2.5: Other cuts of search domain Dx where implicit and feasibility constraints are violated. The

meaning of colours is the same as in Fig. 2.4.

34 2. Practical problems with feasibility or implicit constraints

a)

14 14.5 15 15.5 16 16.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x21

x1 b)

14 14.5 15 15.5 16 16.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x21

x2

c)

0.42 0.44 0.46 0.48 0.5

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

x3

x2 d)

0.93 0.935 0.94 0.945

1.558

1.56

1.562

1.564

1.566

1.568

1.57

1.572

1.574

1.576

x2

x4

e)

21.508 21.51 21.512 21.514 21.516

0.413

0.414

0.415

0.416

0.417

0.418

0.419

0.42

0.421

0.422

x10

x3 f)

0.93 0.935 0.94 0.945

1.66

1.662

1.664

1.666

1.668

1.67

1.672

1.674

1.676

1.678

x2

x1
3

Figure 2.6: Exemplary cuts of search domain Dx with regions of active constraints of various types drawn

using colours as in Fig. 2.4. Sections are drawn for some of randomly chosen trial points from Dx where

feasible region convexity was detected.

2.1. Power plant model 35

is that the apparent zero-measure isolated areas of simulation failures (cf. Fig. 2.5c–f) are —

or can be — ‘infinitely many’, thus making feasible region like a sieve.4 Constraints of this

type are extremely difficult to handle.

There emerge two consequences of simulation failures for the process of design or adaptation

of an optimisation routine. The first one is strictly practical — one has to restore order to

the computing environment after such an abortive action initiated by the simulator itself, or

by the routine controlling simulations. The second one is the fact that no y altogether is

produced — there is no qualitative measure of by how much the feasibility constraints were

violated.

Iterative solving and its impact on performance index surface

Apart from its domain shape, the behaviour of performance index itself is troublesome in cer-

tain regions. Those inconveniences have turned up again during gradient estimation tests as

well as in operation of non-gradient procedures. The common problem that appeared was rela-

tively big fluctuation of f(·) in small neighbourhood of some x, which made impossible gradient

estimation or satisfaction of optimisation routine termination criterion. Fig. 2.7 presents an ex-

emplary plot of performance index f(·) in a particular direction d, i.e. f(x0 + cd, s(x0 + cd)),

visualising those fluctuations. The considered range for changes in f(·) and in x is small,

and the picture presents rather a close-up of the surface of f(·). From the engineering point

of view, so small fluctuations of f(·) are irrelevant; nevertheless they are there, showing no

regularity, unlike in Fig. 2.5f. As it is, they may handicap gradient estimation or optimisation

algorithms, until they get discovered as in Fig. 2.7. However, even in case of such such nice

graph of fluctuations, there is nobody to decide about some general parameter value for f(·),

like Lipschitz constant, in whole Dx.

Another exemplary directional performance index graph, presented in Fig. 2.8, shows that

those small fluctuations may be accompanied by others, bigger by an order of magnitude.

Such big jumps of f(·) are nothing uncommon for the considered model, and may happen also

in the area of most interest, i.e. in proximity of the solution (which is the case for Fig. 2.7 and

Fig. 2.8). A sudden decrease of the performance function by nearly 0.0014 (in other words, by

almost 0.1%) experienced near the value of 7.5 ·10−4 on the abscissa is a value rarely negligible

in case of costs for low-margin industries, and definitely distinguished by most optimisation

4One may dare say that feasible sets defined by (1.3) may easily exhibit fractal nature. Consider that one of

reasons for simulation failure is infinite loops that happen for certain x’s. In other words, those infinite loops

represent badly handled instabilities of simulator internal sets of numerical equations — and such stability

criterion is the classic way fractal sets are defined [85, pp. 120–123].

36 2. Practical problems with feasibility or implicit constraints

−8 −6 −4 −2 0 2 4 6 8 10

x 10
−4

1.64753

1.64754

1.64755

1.64756

shift of x in sample direction d

pe
rf

or
m

an
ce

 in
de

x
va

lu
e

Figure 2.7: Graph of performance index in some direction d, computed close to the problem optimum.

Function values for subsequent arguments are marked with dots, the lines are drawn only to indicate dots

ordering.

−10 −8 −6 −4 −2 0 2 4 6 8

x 10
−4

1.6474

1.6476

1.6478

1.648

1.6482

1.6484

1.6486

1.6488

1.649

shift of x in sample direction d

pe
rf

or
m

an
ce

 in
de

x
va

lu
e

Figure 2.8: Directional graph of performance index, computed close to the optimum. Stepwise character

and sudden fluctuations of f(·) are shown.

2.2. Microwave guide model 37

routines. In the author’s opinion, jumps like this one may be effect of some internal switching

taking place in the model, for example in case when the steam changes its state. The formulae

responsible for computing the model in two adjacent sub-domains may be not ‘matched’ at

the border, not in physical but in numerical sense. This is only a hypothesis waiting for

confirmation from some authority in the field. However, in the meantime (as happens in most

cases when the product deployment deadlines urge) one has to work with the model as it is,

and to adapt the optimisation routine to model specifics in order to ensure stable operation.

2.2 Microwave guide model

This section presents a problem being an essential part of the process of a microwave circuit

design, namely the adjusting of waveguide dimensions with purpose to obtain an element of

desired electromagnetic properties. Difficulties in solving this type of problems have been

signalled from The Institute of Radioelectronics at Warsaw University of Technology (IR).

Before the computer era, calculation of electromagnetic properties of various objects was

based on analytical methods, and therefore was applicable to simple devices. Coils, plates,

wires can be examples calculable using circuit theory formulae, with reasonable modelling

accuracy. For more complex structures those formulae are not sufficient and one has to resort

to numerical solutions. Nowadays, given the computer speed, advanced electromagnetic field

behaviour simulators can be constructed and harnessed in computer aided design (CAD) of

a circuit of high complexity.

The algorithm those simulators use is the Finite Difference Time Domain (FDTD) method.

The method was presented first in [113]; it computes the behaviour of electromagnetic fields

inside a physical object as the function of time. To make this possible numerically, the physical

object as well as the time domain have to be discretised. The object has to be divided logically

into cells made of homogenous material. The time is discretised into quants. Next, Maxwell

equations can be solved iteratively for each cell and for each time quant.

The simulation algorithm utilises discretised Maxwell equations that determine electro-

magnetic field distribution and evolution, in the following way. The temporal increments of

electric field component in interval < t, t + ∆t > are calculated from spatial derivatives of the

magnetic field at the instant t + 1
2
∆t. Analogously, increments of the magnetic field compo-

nent between < t + 1
2
∆t, t + 3

2
∆t > are calculated from spatial derivatives of the electric field

at t + ∆t. This constitutes one step of the simulation procedure.

FDTD method, when applied to properly constructed and adequately excited model, may

become a very powerful tool. It is able to calculate field (and heat) distributions, impedances,

38 2. Practical problems with feasibility or implicit constraints

Figure 2.9: Spherical element approximation in original FDTD (left) and in QW-3D (right).

frequency-domain characteristics etc. Its applications can be very many as well in civil as

in military design tasks, especially under extra preconditions as to designed element size or

shape. Thus, to give some examples, one can calculate heating process in a microwave oven,

or one can go for calculation of radiation patterns of a cellular phone antenna in vicinity of

a human head. Finally, one can consider making a flat antenna, a filter or a resonator of

desired properties, on a three-dimensional arbitrary surface, like window pane or a helmet.

Modelling with QW-3D package

The FDTD-based simulation software that IR works with is QW-Simulator. It constitutes

the core of a commercial modelling, simulation, analysis and optimisation package for elec-

tromagnetic elements, bearing the brand name QuickWave-3D (QW-3D). For the detailed

information on the product, see [93].

QW-Simulator added value to the original FDTD method is built up by numerous improve-

ments concerning the scope of computable element shapes, simulation efficiency and accuracy.

The major limitation of FDTD that has been overcome was the discretisation procedure di-

viding space domain in cubicoid cells of equal size and made of homogenous material. QW-3D

allows each cell to be filled with two different materials, the border between them being an

arbitrary plane. This reduces time and memory needed for simulation, and simulation errors.

The original and improved discretisations are shown in Fig. 2.9, illustrating an exemplary

design of a spherical object. Another QW-3D facility is to let user define singularities in

three-dimensional domain, like infinitely thin wires or surfaces.

2.2. Microwave guide model 39

QW-Simulator models are stored in files prepared with QW-Editor, a program for graphical

manual design of elements. While designing, the user may combine a number of pre-defined

elements with those created manually and with those imported from a couple of supported

CAD programs. Also, QW-Editor allows to adjust manually space discretisation patterns in

order to indicate regions demanding particular simulation precision. It is also the interface to

the simulator through which system excitations and measurement points are defined.

To calculate frequency-domain system characteristics, the system is excited with a pulse

on its input. Propagation of this pulse is then calculated in time domain until the effects of the

excitation are small enough to stop simulation. The time-domain response can subsequently

be mapped into frequency domain by Fourier transform. To compute field distribution at

certain frequency, the system is excited with a sine wave. In both cases one has to care about

proper excitation signal parameters and sufficiently long simulation run to obtain reliable (i.e.

low-noise) results.

Optimisation in QW-3D

QW-Simulator is accompanied in QW-3D by the optimisation module, QW-Optimizer [94],

providing an algorithm for automated design of elements. QW-Optimizer should be considered

rather as a support tool in element design, and not as an autonomous design tool allowing

element creation from scratch. It is used only after the user has decided about the element

topology and structure, and has provided some element initial dimensions. Powell optimisation

routine (described in detail on p. 70) in QW-Optimizer uses those initial dimensions as the

starting point, and tries to improve the performance index of the element.

Performance index can be defined in QW-Optimizer for any parameter calculated in fre-

quency domain (e.g. impedance, scattering matrix). If we consider all parameters calculated by

QW-Simulator for frequencies of our interest to be the model output y, then the performance

index, as it is used by QW-Optimizer, can be written as follows

f (x, y) = ‖r (ax, x, xL, xU) ‖2 + ‖r (ay, y, yL, yU) ‖Lp
. (2.5)

Therefore, f(·) is made of the sum of two norms of vector functions r(·) penalising violation

of Dx or Dy. The former norm is, by convention, Euclidean, squared. The latter norm ‖ · ‖Lp

for an even p ≥ 2 is defined for some vector v as follows

‖v‖Lp
=

�� � maxi∈{1,...,dim v} |vi| when p = ∞ ,

p

� �
dim v

i=1 vp
i else.

(2.6)

The function r (az, z, zL, zU) of some z and the corresponding vectors of scaling factors az,

and of lower and upper bounds zL, zU, returns a vector of weighted constraint violations (if

40 2. Practical problems with feasibility or implicit constraints

they happen) according to the formula

ri =

���� ��� az,i (zL,i − zi) when zi < zL,i ,

0 when zL,i ≤ zi ≤ zU,i ,

az,i (zi − zU,i) when zi > zU,i ,

. (2.7)

Performance definition as in (2.5, 2.6, 2.7) makes it possible to specify different bounds on

any parameter of interest in the range of frequencies the simulator is set for. In particular,

one may define typical design tasks like making a band-pass filter as optimisation problems.

Also, by introducing penalty functions r(·) for the design and output variables, one makes the

optimisation problem an unconstrained one. Furthermore, by avoiding Lp norm of high p, one

makes the problem treatable by simple and efficient Powell method.

The above formulation of the performance index that extensively uses exterior penalty

functions may provoke objections from the theoretical point of view. In fact, it allows solution

of the problem to violate constraints on x as well as on y. Of the norms available in construc-

tion of f(·), the most efficient in penalising tiny violations of Dy is ‖ · ‖L∞
. It is therefore

the most desirable one to be used in problem definition. On the other hand, it introduces

sharpness at the points where penalty is activated — the sharpness barely manageable by

Powell routine.

In presence of such difficulties QW-Optimizer user is presented with the following method-

ology of attacking the design problem:

1. Prepare the initial design as good as possible with your experience, and theoretical

apparatus.

2. Choose correct decision variables, i.e. those practically changeable and really affecting

electromagnetic parameters of the element.

3. Start optimisation with small p (4 to 8) — this improves convergence, because the surface

of f(·) is smoother, at the cost of solution accuracy.

4. Increase p in later stages of optimisation to achieve higher accuracy.

5. Since f(·) may have local minima, try running the optimisation process from various

initial points (designs).

Optimal microwave circuit design problem

The above procedure mitigates inconveniences introduced by implicit constraints and penalty

functions enough to make it possible to apply Powell optimisation routine. It does not, how-

ever, overcome two other obstacles: local minima and slowness of the optimisation process.

2.2. Microwave guide model 41

x

x

3

2

1

1

x

x

Figure 2.10: Three-dimensional (left) and top (right) view of the waveguide bend subject to design

optimisation. The dimensions x1, x2 and x3 are the selected decision variables.

The task undertaken jointly by the author and IR staff was to apply another optimisation

routine and to develop alternative, not so restrictive, problem solving methodology. The goals

were to:

• Make it possible to carry out optimisation with ‖ · ‖L∞
norm. This requires implicitly

that the optimisation routine should be able to cope with non-smooth surfaces of the

performance index f(·).

• Perform search for global optimum rather than the local one. Do it with no need for

user involvement in changing the initial optimisation point.

• Make use of the parallel computing environment available in order to speed up the design

process. (The Powell routine was incapable of performing computation in parallel in any

way.)

The particular design task formulated by IR was setting the dimensions of a waveguide

bend. Waveguide is a kind of transmission line, frequently used in gigahertz frequency band.

It is a metal pipe of rectangular cross-section, bevelled at its bend as shown in Fig. 2.10. Air

is the media the wave propagates through, and propagation direction is indicated with arrows.

Bends like this may transmit considerable powers when used e.g. inside a radar. Therefore,

one of major requirements is small wave reflection coefficient of such circuit within a specific

range of frequencies. It leads directly to formulation of an optimisation problem of waveguide

bend design as combination of (1.1) and (2.5). The model output vector y contains waveguide

response in frequency domain. The decision variables x are specified in Table 2.3. The variable

x3 (ims) will be initially not considered as the decision variable. It defines a chamfer used for

compensation of so-called fringing field effects which occur on sharp metal edges, and its value

42 2. Practical problems with feasibility or implicit constraints

Decision Internal model Lower Upper Description

variable variable bound bound

name name

x1 ems 10 30 length of external edge cut

x2 mcp -5 5 depth of external edge cut

x3 ims 0 12 chamfer width

Table 2.3: Decision variables for the waveguide bend optimal design problem.

can be calculated equally well from theoretical formulae. It will be used to test the impact an

increased problem dimension has on optimisation efficiency and efficacy.

As it was indicated above, the original optimisation method used in QW-Optimizer does

not support well the performance index defined by (2.5) for p = ∞. The following two

paragraphs discuss in more detail the two major difficulties presented by f(·) — multiple

minima and simulation noise.

Implicit constraints mapped into penalty function

The joint work with IR started with examination of the surface generated by f(·) for the case

of two-dimensional problem of waveguide bend design. This was done by setting a grid over

Dx and calling QW-Simulator for each grid point. This effort was done in order to get a closer

look on the nature of that surface, and was justified as well by the former IR observations and

suspicions concerning the nature of f(·) as by the mere simplicity and small dimensionality of

the problem. The surface obtained for whole Dx is presented in Fig. 2.11. There is nothing

unusual about its shape, but the values taken by f(·) need a comment. Apparently, f(·) never

reaches zero value, which means that no design satisfies the implicit constraints completely.

This makes the optimisation problem quite different from that presented in Section 2.1; in

that case violating Dy could mean not just imperfect working point but running out of area of

model validity. Further explorations of the shape of f(·) in the vicinity of where the optimal

point is supposed to lie reveal what makes the optimisation task so difficult.

Fig. 2.12 presents surface view and a contour plot of a function of strikingly steep slopes.

Those slopes will actually be discussed in the next paragraph; but there is some other difficulty

in f(·) that is visible better on the contour plot — it is two separate attraction areas that have

nothing to do with steep slopes. They indicate that there may exist several equally (or nearly

equally) good designs for that element. Such behaviour of the performance index explains the

need for an optimisation routine of rather global character.

2.2. Microwave guide model 43

Figure 2.11: View of a surface generated by performance index f(·) over the domain Dx for the two-

dimensional problem of optimal waveguide bend design.

Effects of electromagnetic simulation error

Apart from multiple minima, the performance index exhibits features that are the effect of the

underlying numerical simulation procedure. They were presented first in Section 2.1; they are

occasional large jumps plus ubiquitous small fluctuations of f(·). Both are clearly visible on

the surface view in Fig. 2.12. The cause of the fluctuations, as explained in [93, p. 13], is the

termination criterion in wave propagation simulation procedure, which makes the simulator

stop when the field amplitudes are reduced to negligible values. Due to finite numeric accuracy

and accumulated errors, this may happen slightly earlier or later, producing a sort of noise.5

The source of sudden jumps in not explained well. Probably it is related to the change

in the number of filled cells involved in simulation as element dimensions are changed. It

comes from IR staff experience that with finer space discretisation those jumps become more

frequent, and simultaneously lower. Such situation is illustrated in Fig. 2.13, where the cross-

section through the actual performance index is given with thin black line, and some possible

shape of the same performance index for finer discretisation is drawn with thick gray line.

Refining discretisation also affects the simulation error — small fluctuations are signifi-

cantly reduced. It all comes at the cost of the simulation time and memory usage: reducing

the cell size by 2 decreases the error by 4, increases memory usage by 8 and the simulation

time by 16. The cell size can be changed only manually, i.e. the optimisation routine has no

5Here, the term ‘noise’, although used customarily in the branch, refers rather to appearance of error

rather than to its randomness. Such ‘noise’ values are completely deterministic — but not determined by any

open-form mathematical formula.

44 2. Practical problems with feasibility or implicit constraints

Figure 2.12: View of performance function surface (top) and the corresponding contour plot (bottom)

for waveguide bend design optimisation problem. The two filled areas in the bottom graph denote two

attraction regions of better (darker colour) and worse (lighter colour) alternative for waveguide designs.

2.3. IP services market model 45

Figure 2.13: Cross-section through performance index (cf. Fig. 2.12) in the optimum neighbourhood for

x2 = 4.96. The narrow black line presents the real graph for the actual discretisation. The wide gray line

presents what that graph could look like for some finer discretisation.

way to adjust it.

Let us return to Fig. 2.13 to examine the effects of finer discretisation. It turns out that it

can affect f(·) so that the minimum (indicated by an arrow) is located where the step plateau

was in the case of coarse discretisation. Such dramatic dependence of the shape of f(·) on

some simulation parameters breeds distrust for the results produced altogether, and makes one

search for some optimisation methods that rely on a set of points only, rather than on every

single one. Techniques that could be of interest in such case are presented in Section A.2.

2.3 IP services market model

This section presents the problem of optimal pricing for networking products.6 Price is —

sometimes more than brand, quality, technical support and other factors — the attribute of

a product much distinguished in the market game between the seller and the buyer. Probably

it is so because of the immediate effect prices have on the most measurable and instant effect

of a transaction — the profit. It is also because the price is the attribute easily comparable

6In general, pricing can be applied at operational and at marketing levels. At the operational level its

main purpose is to prevent network congestion and to enforce some policy of resource distribution — prices

of resources are treated more like control signals and not as real-life prices to be paid in true currency. At

the marketing level prices are what they are for ordinary people — i.e. money that has to be spent for some

product or service. Here we assume the marketing perspective; for more on the operational perspective, see

e.g. [67] and references therein; for a concise comparison of those perspectives, see [10].

46 2. Practical problems with feasibility or implicit constraints

among competitive products.

The problem of optimal pricing for IP network services was one of the major topics ad-

dressed by ‘Quality of Service and Pricing Differentiation for IP Services’ (QOSIPS) project,

run within Fifth Framework Programme of the European Commission. The Institute of Con-

trol and Computation Engineering (ICCE), the author’s mother institute, was one of five

QOSIPS participants. Of QOSIPS products, the Pricing Module (PM) is focused on optimal

pricing of IP network services, like Virtual Private Network (VPN), with support for calcu-

lation of service utilisation and Quality of Service (QoS) modelling. Being one of PM team

members, the author was directly involved in the process of model making and of price opti-

misation. The market model considered and analysed in this section is not precisely a real-life

example. Nevertheless, all the modelling and optimisation was made using PM, and the model

parameters are adapted in order to emphasise potential problems one can encounter during

optimisation.

In the past few decades much effort was made by economists to construct models of human

attitude towards changing price, and the willingness to commit a transaction (see e.g. [103]

for the details). Most of those models intend to describe the process of purchasing standard

goods by mass customers. The economy models, in order to remain useful, have to be easy to

tune and — since some tuning data may not come just from statistics but through customer

polls and scenarios made by people of various knowledge of economy — they also have to

be understandable by laymen. Let us present four most used ones in the order of growing

complexity:

• Linear model. Its advantages are great simplicity and possibility of tuning using standard

identification procedures (i.e. by least squares routine). The disadvantages are small

validity range (5 ÷ 10%) and symmetry that discards more violent customer reaction to

an increase of price x than to a decrease. The formula for linear model is

rLIN(a, b, x) = b − aT x , (2.8)

with a and b representing coefficients.

• Multiplicative, or Cobb-Douglas, model. It derives from the term of elasticity, describing

dependence between relative changes of output against relative changes of model input.

Cobb-Douglas model is helpful in modelling sales of own products (in such case elasticity

is negative) as well as in modelling the impact of competitive product prices (elasticity

is positive). Models tune well using the same least squares routine. Cobb-Douglas

model shares with the linear model the same inconvenience of limited validity area. The

2.3. IP services market model 47

Cobb-Douglas formula is

rCD(α, β, x) = α

dim x�

i=1

xβi

i , (2.9)

where α is a coefficient and β — vector of elasticities.

• Attraction model. It bases on the assumption that the sales are proportional to the

attraction of a product as compared to cumulative attraction of all competitive products

on the market. There is freedom for formulae to be used for calculating attractions.

Attraction model can be applied in wider range of price changes than the two preceding

models. However, there is no linear tuning procedure available for it. The attraction

model formula is

rATTR(α, x) = α
x1�

dim x

i=1 xi

, (2.10)

where α is a scaling factor. It was assumed in (2.10) that the attraction for product i is

plainly its price xi.

• Gutenberg model. It puts emphasis on the phenomenon that customers are insensitive

to small changes of prices. Its output is driven by the difference of the changed price and

the mean of all relevant prices before the change was made. This allows modelling in

broader range than for the first two model types. Gutenberg model drawbacks concern

mainly the tuning phase in which nonlinear identification procedures must be employed.

The Gutenberg formula is

rGB(a, b, c1, c2, x, x̄) = a − bx − c1 sinh (c2(x − x̄)) , (2.11)

where a, b, c1 and c2 are coefficients, x is the changed price of the considered product

and x̄ is the average price of own and competitive products before the change of x was

made.

Effectiveness of the above model types is shown in Fig. 2.14 where each of them is tuned to

match a sample market response curve. Of course, one can consider using combination of

those models, provided there exist enough data for sufficient model excitation in the tuning

phase.

Market modelling in PM

The work on PM market model development was done in QOSIPS jointly with a partner

company that was considerably experienced by development of decision support tools. A solid

branch of its products are tools for market modelling and optimal pricing. Its success was

48 2. Practical problems with feasibility or implicit constraints

Figure 2.14: Fitting models to a given market response curve. Subsequent graphs illustrate modelling

scope and accuracy for linear, Cobb-Douglas, multiplicative and Gutenberg model types. The market

response curve is drawn with a solid line, model response curves are dash-dotted.

2.3. IP services market model 49

particularly remarkable when price optimisation was applied for uniform products being sold

in big volume, like petroleum, supermarket goods or cellular phones [104].

Knowledge support systems by that partner had much impact on IP services market mod-

elling in QOSIPS. However, the way network service products are constructed and being sold

required development of a new model, able to take into account the following facts:

• Products are complex and made as mixture of obligatory and facultative items;

• Products of one kind are sold in relatively small number, and are diversified by the choice

of component items (made by the customer) and by the prices (as the result of frequent

price negotiations or discounts);

• Unlike for petroleum, the customers are subscribers, which implies obligations on both

parties (customers — loyalty, network operator — reliability);

• Customers use the product in two ways: subscribing (once) and utilising (daily);

• By the nature of network, customers share resources and affect their QoS mutually.

The model module, developed and implemented jointly by QOSIPS partners, allows to

perform simulation of market behaviour, with all important network performance and eco-

nomic indicators, within a specific time horizon. The market and network are treated as one

discrete-time dynamic system. The state variables are numbers of subscribers for each product

i being offered to the market.7 The decision variables are prices of Network Solution Provider

(NSP) own products. They remain constant throughout the simulation. There is neither noise

nor uncertainty8 present explicitly in the system. Let us now present the state and output

equations. Here, they have been simplified enough to make the case clearer, without losing

any of the problem characteristics important for this dissertation. For the full description of

PM market model, refer to QOSIPS consortium deliverables [28, 29].

The number of subscribers at the beginning of time period (usually, month) t+1 is denoted

by vector qS(t + 1) and determined by the state equation

qS(t + 1) = qS(t) + qin
S (t) − qout

S (t) , (2.12)

7In reality, the model is more complex: it is rooted in correct dividing market into segments of customers

that could be characterised by similar attitude towards price changes, and by similar network usage pattern.

One product sold in different segments is characterised by different sales model, and by separate number of

subscribers. There are more features of PM not covered here; they have been presented in [9].

8PM authors from the very beginning were aware of indeterministic nature of almost all phenomena they

aimed to model. However, for the sake of simplicity randomness is suppressed at certain points by calculation

of expected values. The broader discussion on indeterminism in PM can be found in [60].

50 2. Practical problems with feasibility or implicit constraints

where qin
S (t) and qout

S (t) are volumes of customers who subscribe or renounce NSP services

during period t. Volume of those newcomers and leavers is, naturally, the function of price

vector x, but also the function of the overall QoS experienced by the users in period t, according

to formulae

qin
S,i(t) = rCD(αin

i , βin
i , x)qQ,i(t) , (2.13)

qout
S,i (t) = rCD(αout

i , βout
i , x)(1 − qQ,i(t)) , (2.14)

where qQ,i(t) is the indicator of QoS experienced by subscribers of product i, and defined

as fraction of total data set that were conforming to Service Level Agreement (SLA) made

between subscriber and NSP.9 As is readily seen, standard Cobb-Douglas model (2.9) for sales

has been implemented in PM with a term taking into account also QoS deterioration.

Intricacy of network traffic is so big that, in order to model QoS accurately, one should

either make strict simplifying assumptions about network topology and traffic, or to resort to

network simulators [80, 38]. Both methods aspire to infer about exact network state, either

with help of analytical formulae, or by simulations. Both approaches are unacceptable in

case of PM because of limited scope of application or numerical complexity. In PM a simple

network model has been assumed that aggregates utilisations of selected network services,

following the formula

qQ,i(t) =

���� ��� 1 if zi > 1

0 if zi < 0

zi otherwise

,

zi = aquality
i +

�
dim qS

j=1 bquality
i,j qS,j(t)qF,j(t) ,

(2.15)

where aquality and bquality contain coefficients and qF(t) is the vector of utilisations for network

services. This simple scheme makes it possible to indicate (through aquality and bquality) groups

of customers that interfere using up the same resources. The saturation clause in (2.15)

protects QoS indicator from running out of its scope.

Utilisation qF,i of product i is calculated by classic Cobb-Douglas formula

qF,i(t) = rCD(αusage
i , β

usage
i , x) . (2.16)

(Actually, qF remains constant w.r.t. x and the period index t is left only for completeness.)

Equations (2.12), (2.13), (2.14), (2.15) and (2.16) define state function of the dynamic

system, the market model. The numerical procedure executed at every simulation step is

9More information on making SLA’s and providing QoS in IP networks using standard mechanisms can be

found in [115].

2.3. IP services market model 51

Figure 2.15: Operations (1–5) performed during one simulation step in PM. Arrows indicate data used

for each operation.

shown schematically in Fig. 2.15. Of the operations presented there, Operation 4, deserves

a comment: it is the calculation of economic indicators, income and costs, that are part of the

simulation output vector y. NSP income and incurred costs in time period t are split across

all products, and stored in vectors qI(t) and qC(t), respectively. Income and cost are functions

of prices and of internal model variables

qI(t) = rI � x, qS(t), qin
S (t), qout

S (t), qQ(t), qF(t) � ,

qC(t) = rC � x, qS(t), qin
S (t), qout

S (t), qQ(t), qF(t) � .
(2.17)

The modelling functions rI(·) and rC(·) may have multiple optima w.r.t. x, and may be dis-

continuous. The simulation output y are the values of all internal variables in all time periods

simulation was run for, plus some their aggregates (e.g. total number of customers and profit

calculated as
�

dim qI

i=1 qI,i −

�
dim qC

i=1 qC,i) denoted here by qA. For simulation time horizon N

the output vector y can be written as

y = (qS(1), . . . , qS(N), qin
S (1), . . . , qin

S (N), qout
S (1), . . . , qout

S (N),

qQ(1), . . . , qQ(N), qF(1), . . . , qF(N),

qI(1), . . . , qI(N), qC(1), . . . , qC(N),

qA) .

(2.18)

52 2. Practical problems with feasibility or implicit constraints

Optimal product pricing problem

The aspect of QOSIPS that is of our interest here, is utilisation of a properly identified model

of IP services market with the objective to maximise NSP profits in N consecutive monthly

time periods. Usually, prices in the considered branch are changed every half year, and

definitely not sooner than after a quarter. In the model presented here N = 5 is assumed,

which is a reasonable simulation horizon. As is was mentioned above, the model presented

here is much simpler than the original one; also its parameters are modified with purpose to

demonstrate how difficult problems may still be created by so simple modelling formulae.

For convenience reasons, assume that qA,1, . . . , qA,N denote the total number of NSP sub-

scribers in months 1, . . . , N , and that qA,N+1 is the total profit over all products and all months

considered. Then, the optimal product pricing problem is the minimisation of function f(·)

defined as follows

f(x, y) = −qA,N+1 (2.19)

with the implicit constraints

qA,t > qmin
S , t = 1, . . . , N. (2.20)

Equation (2.19) requires no particular comments. Although managers often express desire to

make market share or the brand perception, or awareness, the extra objectives, such demands

are not accompanied by any idea how to measure them, or how to scalarise such multiob-

jective problem. Equation (2.20) specifies that the total number of NSP subscribers in each

month considered cannot fall below a certain level qmin
S . Such requirement guarantees NSP

some minimum income derived from monthly fees and from other flat charges imposed on

subscribers, thus ensuring minimum profitability of the business. Such formulation of the

implicit constrains could be replaced by direct requirement for the minimum overall profit.

However, this is not done, possibly partially due to management staff habits, and partially

because (2.20) secures some minimum initial number of subscribers at the beginning of the

next decision period when the prices change.

The considered model consists of two products marked by two prices, x1 and x2, that

are the decision variables. They are subject to standard constraints (1.4a).10 Parameters of

the model being under consideration are exactly the same for both products. It is assumed

that there are no competitive products on the market, and therefore that the number of new

and renouncing subscribers depends only on the own price, x1 or x2. The sensitivities in

formulae for qin
S (2.13) and qF (2.16) are both common-sense (-1 and -0.2, respectively). The

10In practice, the lower bound is of highest interest — for NSP that are non-dominant on the market it is

set to the corresponding price of the dominant NSP, reduced by some margin.

2.3. IP services market model 53

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
19.7

19.8

19.9

20

20.1

20.2

20.3

20.4

q S

x

minimum
month 01
month 02
month 03
month 04
month 05

Figure 2.16: Graph of the number of subscribers in the first 5 months as the function of changed price

in unidimensional exemplary market model. The initial number of subscribers was 20 and the old price

value was 0.5. The minimum observed number of subscribers in all 5 months is drawn with thick gray

line.

sensitivity in formula for qout
S (2.14) is set to -1. Parameters for (2.15) were selected so that

both 0 and 1 values can be reached easily in Dx. (This means that NSP network is rather

underprovisioned.) The next paragraph presents types of problems such apparently simple

model, as well as models alike, is able to create.

Simple models — difficult problems: unconnected domains and mul-

tiple minima

The fact that the discussed model is a product of simplification of original PM model does not

prevent it from generating non-connected areas of feasible x’s, like those in Section 2.1. This

happens again thanks to implicit constraints (2.20). The situation persists also for the model

restricted to just one product offered. Fig. 2.16 presents graphs of the number of subscribers

vs. price, for subsequent months, with the minimum value drawn by wide gray line. For

x > 0.5 implicit constraints are violated in the first months by sudden ebb of customers scared

off by high price (later, this is balanced by newcomers attracted by better QoS conditions

when qS is low). For 0.37 < x < 0.5 it is the opposite: setting the price lower first attracts

subscribers with that bargain price — only to repel them by worsening QoS, being the effect

of network congestion. For x < 0.37 QoS indicator reaches zero in one or more months,

54 2. Practical problems with feasibility or implicit constraints

Figure 2.17: Plot of the minimum number of subscribers in the first 5 months for the two-dimensional

model. Lighter areas denote bigger number of subscribers. The solid, dashed and dotted lines enclose

feasible regions for diverse minimum number of subscribers qmin
S .

cutting off newcomers except for those attracted in the initial periods. Now, by setting an

imaginary limit of subscribers at 19.8 or 19.9, one can see the domain may be partitioned into

two subdomains. Situations like this one happen also when a model of identical structure, but

with different parameters, is investigated in steady state (i.e. on the infinite time horizon).

Such case is described in more detail in [60].

The same mechanisms are in force for the model with two products, except for the fact that

the subdomains do not have to be convex sets. Fig. 2.17 illustrates such case. The areas of Dx

where (2.20) is satisfied can be in general not connected (those bounded by solid and dashed

lines) but, in particular, also non-convex (the dotted line). One may object that this can be

eliminated by setting Dx so that ‘unreasonable’ regions, i.e. those where SLA is violated, are

excluded. This argument is right, except for two cases. The first is that a manager in NSP

may initially not know what are the reasonable bounds for x, and the decision support tools,

like PM, are to make it clear. Such cases should be eliminated by the manager who is to judge

the solution produced by a decision support tool. The second is that some other manager may

deliberately want to exploit the customers by involving them in disadvantageous contracts.

Such cases should be eliminated by a properly constructed SLA.

Another issue is the shape of the performance index f(·), the profit. Since PM simulation

2.3. IP services market model 55

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

−3

recurrent fee

un
it

pr
ic

e

high profit
low profit

Figure 2.18: Contour plot of profit as function of two decision variables in a market model consisted of

one complex product composed of elements subject to flat or utilisation-based pricing.

routine, unlike the previous simulators, does not approximate iteratively the correct output

value, there is no reason to expect small fluctuations of f(·). However, local minima or non-

differentiability may happen, as shown in Fig. 2.18.11 Their existence is the result of switching

formula (2.15).

One may ask about the correlation between graphs of minimum number of subscribers with

that of the profit. This correlation depends on the factors profit is based most on. Logically it

has to rely on the number of subscribers since monthly fees are traditionally the most reliable

income making factor. However, there may be prices, defined in PM model, for other activities

than just for staying with NSP. A customer may be charged for subscription, migration and

even for breaking the contract — this, in total, makes more income for NSP than monthly fees

only. In such case the income graphs could look entirely different from that in Fig. 2.18. The

question is that in case when profit is not based mainly on monthly fees, there is no much sense

in specifying limits for qS. However, while approaching PM models one has to be prepared

for presence of both fragmented and non-convex domain as well as for multiple-optima and

locally non-differentiable performance index f(·).

11This figure illustrates performance index calculated for yet another model that has been presented in [9].

56 2. Practical problems with feasibility or implicit constraints

2.4 Conclusions on the existence and nature of difficult

problems

The existence of specialised simulators is an irrefutable fact. Models of power systems, waveg-

uides, IP services market introduced in this section are good representatives of a whole branch

of simulators dedicated to support good design and operation of complex systems. Simulators

presented here share important common features. First, the modelled objects are determinis-

tic, and there is no need to cope with random values present at simulation output.12 Second,

the decision variables are allowed to take values from continuous sets.13 There exist particu-

larly many simulators that work in a fashion similar to QW-3D. They are usually based on

FEM which, by spatial and temporal discretisation of physical laws, is able to calculate real-

life behaviour of designed systems. Applications of FEM range from ground water flow model

to aircraft wing design. The two other simulators considered represent a legion of very spe-

cialised, if not to say non-standard, modelling approaches, exploiting one’s big knowledge of

a particular problem and many-year experience — like in case of IHE and QOSIPS products.

Another feature simulators have common in is they are usually created for manual opera-

tion. This means that in interactive mode the operator of a simulator is presented with the

current status, or prompted for intermediate decisions where the algorithm is endangered to

fail in computing the output value (or the simulation accuracy would be degraded). IHE sim-

ulator reports unreachable termination criteria met in its inner loops; QW-Simulator creators

remind of benefits of setting the discretisation pattern manually. Such actions do not have

their counterpart in simulator programming interface (which is mostly a file). This situation

limits the possibility of running the simulation-optimisation couple from the very beginning

to the end without human intervention. However, this is exactly what customers expect. This

is why the optimisation routine must often work in a hostile environment, and must develop

workarounds for crisis situations appearing during simulation a skilled operator would be able

to resolve or prevent.

Problems presented throughout this chapter show that feasibility constraints are not present

widely. They appeared only in the case of IHE models — but it does not mean that such

constraints, if met, should disqualify coupling simulator with optimisation routine. First, fea-

sibility constraints emerge as the result of model intricacies: they may define regions where

not only the model is invalid, but also they may define states forbidden for the system being

modelled, and therefore they are piece of useful information. Sometimes it is only the amount

12In the case of market model, the randomness is managed internally.

13For market model of the type considered, the prices do not have to be aligned at 0.99 levels.

2.4. Conclusions on the existence and nature of difficult problems 57

of work needed that prevents simulator authors from emitting emergency signals in the form

understandable by the overlying optimisation routine, before the simulator crashes. Second,

all simulators are considered in this work as if they were given to the author by their creators,

with no intend (or, sometimes, possibility) of modifying their behaviour. In cases of simula-

tors being commercial products, any modifications were prohibited; in some other cases the

amount of work to be put in for those modifications would be prohibitive.

The role implicit constraints may play varies. In some cases (power system model) they

determine regions of model validity and no simulation result violating them is reliable. In

other cases (market model) they define some objective, but the model is in force also when

this objective is not reached. A variation of this type of constraint perception may be when

implicit constraints are violated for all x’s in Dx, and penalty for their violation alone is the

performance function (waveguide model).

As regards the characteristics of performance function f(·), there were observed common

and individual features. Common features for all models are the presence of local minima and

local nondifferentiability of f(·). The common phenomena for models where output is approx-

imated through iterations are local discontinuities of f(·) and ubiquitous small fluctuations of

its value. The awareness of potential problems optimisation that f(·) may cause was common;

after all, failure of optimisation routines used originally was the reason of author’s involvement

in development of new optimisation tools, in cooperation with the developer teams.

The above observations allow to state that there indeed exist simulation-based optimisation

problems where constraints defined implicitly are of importance. Problems with feasibility

constraints happen rarely but there are reasons that they cannot be reformulated, and therefore

they must be handled by appropriate optimisation routines. Implicit constraints are common,

although their role may vary. The properties of performance index are problem dependent,

but in general they may include discontinuity, multiple minima and simulation error. Those

conclusions prove Thesis 1.

The next chapter presents practical problems met by the author in the wider context.

Other types of simulation-optimisation problems will be presented along with suitable optimi-

sation algorithms. Such overview helps in formulation of a standard approach to simulation-

optimisation, which serves as a guide for solving problems presented in this chapter.

Chapter 3

Survey of problems and commonly

used optimisation algorithms

This chapter presents the outcome of literature studies that were made in an attempt put to

find practical optimisation problems resembling in a number of ways the problems presented in

Chapter 2. The keywords used in the search were ‘simulation’ and ‘optimisation’ (or, rather,

in reverse order, since the simulation is, notably peculiar, but just a method of computing the

performance index value). In fact, what was looked for was a set of candidate optimisation

routines hopefully capable of solving the presented problems. Needless to say, sought routines

had eventually to support not keywords but concrete problem features: non-smooth multi-

optima performance index and constraints of all presented sorts. The effect of the studies

is an anthology of routines that are really useful for the considered problems and problems

alike. Also, as a sort of by-product, the effect of literature studies is yet another comprehen-

sive and subjective classification of simulation-optimisation problems; other classifications and

overviews within this topic abound in the literature [96, 24, 109].

Unexpectedly enough, majority of publications associate terms ‘simulation’ and ‘optimi-

sation’, when appearing together, with optimisation problems where the dominating difficulty

is simulation output obscured by disturbances or noise of random nature. Such cases, ap-

parently different from the three models concerned, are duly presented in this dissertation in

Appendix A for two reasons: firstly, because they are so many that they cannot be easily

skipped over; and secondly, because some optimisation routines and techniques prescribed by

authors in those cases can be of use for the problems concerned in this work.

Such evident shift of gravity towards systems affected by randomness may have its sources

in the very definition of the term ‘simulation’. Most authors connote it with imitating state

trajectory as the time changes, inevitably with some random input in the game. Consequently,

59

increased simulation effort there means longer simulation horizon. However, simulation, for

many having undoubtedly temporal aspect, may also have as its goal increasing accuracy by

iterating internal loops in order to balance the model equations, as it is in IHE modeller.

Still more groundless is the alleged link between simulation and randomness. Fortunately,

there exist authors willing to make a broader definition of simulation [100], easily enclosing

the three models of our concern. The cases presented in Chapter 2 are sometimes termed

as ‘design optimisation’ [78, Optimization Software Guide link], but such terminology seems

characteristic rather for a particular circle of optimisation software manufactures than for

a class of problems, and seems markedly unfit for the optimal pricing problem.

The contents of this chapter is as follows. Initially, classification criteria for simulation-

optimisation problems are presented. They are followed by some general guidelines for ap-

proaching those problems as suggested in the literature, and accompanied by exemplary appli-

cations. Next, the main body of the chapter are concise descriptions of most frequently used

optimisation routines in this branch. Assuming, as in case of our problems, the performance

index type to be the major problem and routine classification criterion, Section 3.1 presents

classic, demanding and efficient routines — the gradient ones, and Section 3.2 presents less

demanding but more robust — the direct search ones. The selection of algorithms is not only

the result of regular literature searches, but it has been affected by experience reported by

senior colleagues from — to use tabu search terminology — author’s neighbourhood. Many of

those routines are constituents of advanced optimisation solvers; the overview of such solvers

is given in Section 3.3. The chapter closes with Section 3.4, containing conclusions on the

proposed universal approach to solving problems as considered here and alike.

Since most of algorithms presented in this chapter do not support feasibility constraints

directly, it is justified to reformulate the optimisation problem (1.1) as follows

min
x

f(x) , (3.1)

where f(x) df= f(x, s(x)) — that is, to find an optimal point x? that minimises f(·). The set

of values the performance index f(·) can take is real and bounded from below.

Simulation-optimisation — features and classifications

Using a simulator to compute an objective function value obviously does not, from strictly

theoretical point of view, define by itself a special class of optimisation problems. One can

consider employing a simulator to compute the value of a linear function, in the extreme case.

However, performing simulation has several practical reasons, preconditions and implications.

Usually,

60 3. Survey of problems and commonly used optimisation algorithms

• The performance index or constraints cannot be computed otherwise than numerically;

consequently, the optimisation problem becomes nonlinear and, perhaps, discontinuous

(cf. models presented in Chapter 2);

• The problem dimension is moderate (dim x < 1000); this limitation comes partially from

restricted capacities of human imagination to circa 7 dimensions, and dates from time

when the simulation was started only manually;

• Most of the computation budget is consumed by the simulator, and very little by the

optimisation algorithm. This happens due to two major factors. The first is the natural

modelling complexity: the load of mathematical and practical knowledge put in a model

results in numerous formulas, often appearing in nested loops, solvable by executing

iterations of heavy numerics. The second is the uncertainty (e.g. described by probability

distribution functions) that propagates within the model rendering it intractable but

through lengthy averaging.

Of the above characteristics only the first one really determines efficacy of an optimisation

routine being applied. The last one, however, demands efficiency and often performs the

ultimate verification of that algorithm applicability.

The following classification criteria of simulation-optimisation problems may be distin-

guished, in the order of impact they have on selection of the optimisation routine:

1. Type of the decision variables — mixed, discrete only, continuous only.

2. Type of the performance index function — discontinuous, continuous, differentiable,

convex, linear.

3. Type of constraints — as for the function type, plus the feasibility constraints.

4. Determinism or uncertainty of the model.

The choice of an optimisation routine is also affected, mainly for efficiency reasons, by a number

of other conditions, e.g.:

• Availability of information from simulation other than output;

• Requirement for global optimality of the solution;

• Ability to control simulation behaviour (e.g. accuracy).

61

These criteria will be shortly presented now.

Continuity of decision variables is presented here as the major classification criterion since

it determines validity of the following two others. A variable xi may be allowed to change

continuously or discretely, or both ways. If all decision variables are continuous, we have

a continuous optimisation problem; if all decision variables are of the second kind, we have

a discrete optimisation problem. All remaining problems are classified as mixed. In reality,

most of design problems are formally discrete due to standardisation of available materials,

discrete nature of actuators, and alike. Also measurements performed on a system are discrete

for the same reasons. However, this fact by itself does not qualify all such problems as discrete

— the qualification is determined by the change in system behaviour caused by the smallest

possible change of parameter value. If this change is not rapid (i.e. it is rather quantitative than

qualitative) then continuous optimisation algorithms may be applied because the discretisation

of the algorithm output does not change the nature of a solution. Otherwise (e.g. in case of

combinatorial optimisation) one really deals with a discrete problem, and most of the following

discussion about continuity-specific features of performance index and constraints does not

apply. Discrete problems are not the subject of our concern; however, many of them are

attacked using a suite of direct optimisation algorithms, as described in [54], which are useful

for our problems. There exist also approaches, like branch-and-bound method, employing

continuous algorithms for the discrete optimisation — mainly for their efficiency.

Properties of the function representing performance index greatly determine the solving

tactics. If the function exhibits certain desired mathematical properties (linearity, differentia-

bility etc.) then all criteria must be analysed jointly in order to apply a specialised optimisation

routine (linear programming can be an example). On the other hand, the more general perfor-

mance description is the less other criteria are considered (global optimisation through genetic

algorithm with constraints handled by penalty function and discreetness handled in genetic

operations can be the example).

Constraints on x are often welcome in optimisation problems as they can significantly re-

duce the search space, thus accelerating the operation of an algorithm [82, p. 387]. A constraint

may result from various reasons: range of control inputs of an object, safety of operation of

a modelled system, model validity etc. They are inevitable in design problems; their lack

usually means that some part of problem definition process has not been performed carefully

enough. All the constraints that are defined explicitly with respect to the decision variables,

are desirable, since they can be either supported directly by an optimisation routine (e.g. the

linear ones) or handled by appropriate transformations of the design variables [82, p. 383], or

by penalty functions.

62 3. Survey of problems and commonly used optimisation algorithms

Determinism or uncertainty of the model is related with the existence of a random model

input. Such randomness may be reduced by averaging, thus rendering possible application of

all deterministic optimisation routines. Such randomness may also ‘get lost’ if one is going to

use optimisation methods that are themselves of random nature (most global search routines

employ randomness that may easily conceal the randomness of the process being optimised).

However, the point is to utilise, by the optimisation routine, any knowledge about the random

model input. This leads to a whole branch of stochastic optimisation algorithms, presented in

Appendix A.

The advantage of querying the simulator for its internal state or extra information would

be unquestionable. Every evaluation of f(·) requires running the simulator which is often an

opaque piece of software, a black box. It implies that there is no way of getting more infor-

mation about the simulation outcome than that made available by the software manufacturer.

It means particularly that the derivative ∇f(·) that could speed up optimisation by an order

of magnitude, is not available directly. This gradient, as well as higher derivatives, may be

estimated by the optimisation routine itself, but since estimation can be inefficient and error-

prone, there is strong need for ∇f(·) to be available directly from the simulator. Gradient

availability is postulated particularly often in case of stochastic optimisation. Few specialised

simulators — the ‘white boxes’ [86, p. 19] — offer the feature of gradient computation, hence

in most cases the optimisation routine has to estimate it by itself. Standard ways of gradient

estimation are presented in Appendix A.

The requirement that the solution found by optimisation routine be globally optimal is

virtually not so frequently formulated in practice. Practice shows that a person interested in

optimal design done via simulation-optimisation is satisfied rather by a substantial improve-

ment of the performance index than by its global optimality. It is so in the case when the

initial solution already exists. Nevertheless, it is always welcome to have an optimisation

routine that looks for the global solution, as it may discover a completely unknown attraction

area — and may find x? one would never think of. Globality of an optimisation algorithm

cannot be obtained without either rigorous assumptions about the performance index and

the domain (both being convex, for example), or rather special arrangements concerning the

algorithm and making it, usually, not very efficient. The latter case is particularly painful

when the simulation times are long. Often the users, unable to make assumptions on f(·),

finally resort to evolutionary strategies and other expensive routines [37].

Behaviour of a simulator with some x on its input can be sometimes controlled by adjust-

ing values of simulation parameters. Those parameters influence such simulation features as

running time, overall accuracy, simulator internal rounding and discretisation etc. The ability

63

to accept different parameter values for each simulation run is valuable simulator feature. The

question is whether the optimisation routine can make use of it. If so, rough simulation can

be done in a preliminary stage of optimisation, followed then by simulating with finer and

still finer accuracy as the solution is being approached. Formally, those general simulation

parameters can be perceived as extra elements of the vector x of decision variables.

Simulation-optimisation — guidelines for solving

When faced with simulation-optimisation problems similar to those presented in Chapter 2

(i.e. characterised by multioptima discontinuous performance index, troublesome constraints,

costly performance index calculations), one is advised by numerous authors — reasonably

enough — to put most effort in the underlying model examination and recognition. Having

gained the necessary knowledge, one may apply the following techniques to approach the

problem:

• Verify necessity and formulation of original constraints; reformulate the constraints;

• Replace the original model, where possible, with its rougher or local counterpart;

• Develop specialised optimisation routines fit to handle the particular problem.

Those techniques will be presented below shortly.

Verifying constraints. In the literature there can be found many guidelines for optimisation

problem preparation. As the constraints are regarded, most authors advise to take a closer

look at the model first [82, pp. 382–399]. The constraints can be classified as natural (implied

by natural laws of the modelled system) or practical (resulting from common sense, former

practice, and placed to accelerate numerical searches). Initially, only natural constraints

should be considered and, if possible, eliminated through appropriate transformations and

introduction of slack variables — so that the nature of optima does not change. Any implicit

constraint whose nature can be identified, should be mapped onto search domain [11, p. 189].

Finally, only those practical constraints are added that are desirable either to maintain model

validity or to speed up the computations. One has to be particularly careful while applying the

practical constraints — search space reduction may really accelerate working of the algorithm,

but when applied over-eagerly, it can deprive the domain of the optimal solution altogether.

If the above procedure had been followed and implicit constraints were still active, then

the application of a penalty function could have been the solution. Various penalising schemes

are discussed [96, pp. 487–517]. The penalty function can, however, be applied only when one

knows the extent to which the constraints are violated. If even those few data are unavailable,

64 3. Survey of problems and commonly used optimisation algorithms

e.g. due to simulation failure (as presented in Section 2.1), then the only approach found in

textbooks [116, pp. 138–143] suggests to set the penalty function value to an infinite value.

Unfortunately, by so doing one makes the response surface like a sieve, with which few solvers

can cope.

Using an alternative model. Like in case of stochastic approximation (cf. Section A.1),

there is much emphasis put on model reformulation in order to either yield from it more infor-

mation (mostly, the gradient) or to speed up calculation, or both. In very many publications

(see [50, pp. 1–9] and bibliography cited in the preceding paragraph) the authors insist on

taking a deeper look into the model, and overcoming the difficulties by some kind of aggrega-

tion, mapping, linearisation and heuristics. If such alternative models are to be linear, their

construction and use happens usually in the final stage of optimisation run. If such models are

nonlinear, they are made to provide some estimate of f(·) (analogously to branch-and-bound

approach) in the initial optimisation phase, to indicate unpromising regions.

The evidence of practical applications of simplified models is strong. For example, analyt-

ical models have been successfully constructed and used in problem of design of an impedance

transformer [8]. Also, another successful attempt was made very recently [64] to make poly-

nomial and theory-based approximation of frequency characteristics defining the performance

index in the case of microwave filter design problem. In this case, the model simplification

was the result of much human effort and deep knowledge — and it allowed to apply SQP

optimisation routine (see p. 67).

In many cases, the original models are used once or when needed to determine or adjust

parameters of the simpler model. Also frequently the goal of doing so is only to accelerate

output calculation, because the problem is going to be attacked with nongradient routines

anyhow. As an example, an automatic design procedure of a micropump is reported in [70]

where the costly FEM simulation was applied only to find the coefficients of some much

faster mathematical model (computed by PSPICE circuit simulator), which was then explored

by a genetic optimisation algorithm. In another example [47] a neural network is used to

approximate the original model output in order to make predictions of the performance index,

thus avoiding costly computation of the original model at possibly bad design points. The

approach was applied for optimal design of a job shop system.

Developing tailored routines. Tailoring an optimisation routine to make it solve a partic-

ular task rarely consists in changing the routine structure, e.g. switching statements. Usually,

routine adaptation to the problem means literally adaptation of some parameters (distribu-

tions, coefficients, trial point pool sizes etc.) or construction of appropriate structures and

3.1. Gradient methods 65

operators1 (neighbourhoods, random selection, offspring generation etc.). Of course, proper

routine adaptation may require as much original model knowledge as in case of alternative

model making. Another ‘tailoring’ may take place when one is to apply a hybrid optimisation

algorithm consisting of two or more standard optimisation routines. In such case, the problem

is where to cut, that is, when to stop one routine and switch to another, and what should the

termination criterion be. The problem of where to cut seems to be actually more pronounced

than the problem of termination criterion for the algorithm as a whole, because as a whole an

algorithm can be run until the last moment when the solution is requested.

Two interesting cases of successful merging of optimisation routines into hybrids can be

given here where the hybrids are made not as general-purpose but as problem-specific algo-

rithms. The first one [21] uses a histogram of objective values, created by some standard direct

search algorithm, as starting point for problem-specific routine that performs classification of

decision variables and variable values as ‘important/unimportant’ and ‘good/bad’. Then the

solution is picked that satisfies problem specification. Genetic algorithm, simulated annealing

and tabu search are the considered direct search routines. The second case [47], already cited,

is a merger of genetic algorithm and tabu search features — the authors present a technique

called scatter search, similar to genetic algorithm, with the difference that the offspring is cre-

ated deterministically by linear combinations of so-called reference points, i.e. good solutions

obtained in the previous algorithm steps.

3.1 Gradient methods

Gradient optimisation algorithms use in each step information about first or second order

derivative of performance index f(·). Optimisation is performed subject to equality or in-

equality constraints specified by functions

a)

���� ��� hI,1(x) ≤ 0
...

hI,NI
(x) ≤ 0

, b)

���� ��� hE,1(x) = 0
...

hE,NE
(x) = 0

, (3.2)

that can be expressed shortly hE(·) = 0 and hI(·) ≤ 0. Gradient methods are deterministic

and local, and therefore suitable for optimisation with models that have undergone serious

adaptations. However, the effort put in fitting a problem to an algorithm pays off in the

performance superior to that of direct search methods, especially for moderate and large

dimension problems.

1Skillful construction of structures and operators may also be a means to get rid of difficult constraints

unsupportable by the optimisation routine directly.

66 3. Survey of problems and commonly used optimisation algorithms

Three optimisation routines have been selected to be presented here; they are SLP, SQP

and GRG. Their selection was driven by wide scope of problems they cover, and by their mere

popularity resulting from efficiency and efficacy. They all operate utilising in each iteration

an improving direction d, but the way d is made diversifies algorithm properties.

SLP — Sequential linear programming

Sequential linear programming routine (see e.g. [16, pp. 432–437]) uses first-order approximate

of performance index f(·) and constraints (3.2), both assumed to be continuously differentiable.

In each iteration f(·) and constraints are linearised at the current solution approximate xk,

and the resulting linear programming (LP) problem is solved subject to additional constraints

defining the trust region. The trust region represents limited range of such linear approxi-

mations; in particular it guards against eventual linearised problem unboundedness that may

appear. Depending on the quality of the solution found by LP (i.e. on performance index im-

provement and constraints satisfaction), it may be accepted as the new solution approximate,

or rejected. Successive LP problem formulations are affected by trust region adaptations. In

practical applications SLP works with the performance index augmented with penalty factors

f̃(x) = f(x) + µ

�
NI�

i=1

max{0, hI,i(x)} +
NE�

i=1

|hE,i(x)| � , (3.3)

with µ being some penalty parameter. The outline of SLP algorithm is presented below:

Step 0: Initialise with a feasible start point x0 and with hypercube trust region around,

of size determined by vector δ.

Step 1: Solve LP with (3.2) and (3.3) linearised around xk

mind,aI,a
+

E
,a−

E
f(xk) + [∇f(xk)]T d + µ � �

NI

i=1 aI,i +
�

NE

i=1(a+
E,i + a−

E,i) �
subject to aI ≥ hI(xk) + ∇hI(xk)d ,

(a+
E − a−

E) = hE(xk) + ∇hE(xk)d ,

−δ ≤ d ≤ δ ,

aI, a+
E , a−

E ≥ 0 ,

(3.4)

with aI, a+
E and a−

E being slack variables.

Step 2: Terminate if d = 0. Otherwise calculate approximation accuracy — this is

based on comparisons of (3.3) vs. objective function in (3.4) — and if it is not satisfactory

then decrease δ and go to Step 1.

Step 3: Set xk+1 = xk + d. Perform further adjustments of δ and go to Step 1.

3.1. Gradient methods 67

SLP is reported to be efficient in highly constrained, large and non-linear optimisation

problems. However, if the solution happens not to lie on one of feasible region vertices, the

algorithm performance is much degraded. A solution that might be applied in such case is

to accept xk+1 := xk + αd, with α ∈ (0, 1) being another adjustable algorithm parameter.

A routine so modified, called sequential linearisation with relaxation (SLR), worked well in

case of optimal price setting problem — the protoplast of optimal pricing problem presented

in Section 2.3.

SQP — Sequential quadratic programming

To overcome SLP drawbacks, the SQP routine (see e.g. [18, pp. 55–84]) goes a step further and

utilises information about the second order derivative of f(·). The problem formulation is as in

(3.1) and in (3.2), with the assumption that all functions are continuously twice-differentiable.

In each iteration of SQP algorithm a quadratic programming (QP) routine finds minimum of

quadratic approximation of the original problem Lagrangian function

L(x, λI, λE) = f(x) + λT
I hI(x) + λT

EhE(x) , (3.5)

with λI and λE being the Lagrange multipliers. Therefore, the function being optimised by

QP is not merely an appropriate approximation of f(·) but also carries information about

constraints curvature. QP sub-problem solution is used to construct the direction for line

optimisation of so-called merit function, defined exactly as in (3.3). SQP algorithm can be

presented as follows:

Step 0: Initialise with x0, λI,0, λE,0 and with some initial and positively definite ap-

proximate H0 of Hessian ∇2
xxL(x0, λI,0, λE,0). Usually, H0 = I.

Step 1: Solve QP problem for second order approximate of (3.5) and for first order

approximate of (3.2) at xk, λI,k, λE,k

mind f(xk) + [∇f(xk)]T d + 1
2
dT Hkd

subject to hI(xk) + ∇hI(xk)d ≤ 0 ,

hE(xk) + ∇hE(xk)d = 0 ,

(3.6)

By-products of QP solving are Lagrange multipliers λ̃I and λ̃E at the solution point d.

Step 2: Perform line search, minα∈<0,1> f̃(xk + αd), with f̃(·) as in (3.3). Terminate

if no significant improvement in f(·) or no significant solution shift α was made, and if

simultaneously the constraints are satisfied or violated negligibly.

68 3. Survey of problems and commonly used optimisation algorithms

Step 3: Set xk+1 = xk + αd. Adopt λ̃I and λ̃E as λI,k+1 and λE,k+1, respectively. Use

Hk together with gradients of L(·) calculated at xk, λI,k, λE,k and at xk+1, λI,k+1, λE,k+1

to make the current estimate Hk+1, using e.g. BFGS formula. Go to Step 1.

Refined algorithm organisation makes SQP outperform SLP: no zigzagging of {xk} is ob-

served due to more complete approximation of f(·) coming at low cost thanks to BFGS updates

of Hk. However, SQP may be vulnerable to problems where quadratic f(·) approximation is

inaccurate (the result may be QP’s with conflicting constraints) or where the constraints are

highly non-linear. Consequently, proposals of algorithm improvements appear, e.g. concerning

keeping {xk} within the feasible region. SQP efficiency is influenced, in terms of the problem

properties, mostly by the number of inequality constraints; and in terms of implementation,

by the quality of the underlying QP solver. However, the main precondition for proper SQP

operation is that it should be run in the proximity of x?. SQP is a recognised and appreciated

advanced routine; its many applications span multiple domains. From our point of view an

important one was to employ SQP in the process of surface filter design [64]. It is, however,

the profound reformulation of the used model that constitutes the major part of the work

reported there and that makes SQP application possible. The routine implementation that

was used was an off-the-shelf one, by Mathworks [68].

GRG — Generalised reduced gradient

In GRG the distinction is made between the performance index arguments that are decision

variables, and the arguments that are dependent variables. Thus, the original problem defini-

tion formulated in (1.1, 1.3) is restored.2 The optimisation is performed subject to constraints

(1.4, 1.5). Subsequent approximations of x? are generated by GRG routine — similarly to

SQP — through line searches, but the way search directions are constructed is entirely differ-

ent. Consequently, the routine properties are different too — although both GRG and SQP

find local solutions for general nonlinear and differentiable optimisation problems. In GRG

(see e.g. [36]) the key term that search direction construction bases on is the general reduced

gradient of f(·), i.e. a gradient reduced to the subspace of decision variables x. The value of

generalised reduced gradient has two components; one is the performance index gradient pro-

jected directly on the subspace of x, another is the performance index gradient projected on

the subspace of y and mapped subsequently (by means of linearised equality constraints) onto

x. Search vector based on so computed gradient is constructed in every algorithm iteration,

2The support for non-linear inequality constraints, like those present explicitly in SLP and SQP descriptions,

can be accomplished for GRG by introduction of slack variables.

3.1. Gradient methods 69

and line search procedure is executed in order to find new solution approximation. If this

solution happens to be infeasible, its feasibility is restored by projection onto the subspace

of x. GRG algorithm may be put down as follows:

Step 0: Initialise with a feasible start solution approximation x0, y0.

Step 1: Compute the reduced gradient value at xk, yk

g̃T
k = [∇xf(xk, yk)]T − [∇yf(xk, yk)]T [∇yh(xk, yk)]−1 ∇xh(xk, yk) . (3.7)

(It is assumed here that (1.3) is such that ∇yh(·) is square and non-singular.) Next,

prepare components of search direction dx,k in the space of x

dx,k,i =

���� ��� 0 if g̃k,i < 0 and xk,i = xU,i

0 if g̃k,i > 0 and xk,i = xL,i

−g̃k,i otherwise .

(3.8)

Step 2: Prepare components of search direction dy,k, in the space of y; the search

direction is to be tangent to equality constraints

dy,k = − [∇yh(xk, yk)]−1 ∇xh(xk, yk)dx,k . (3.9)

Step 3: Perform line search: αk = arg min f(xk + αkdx,k, yk + αkdy,k) subject to

constraints (1.5). Set xk+1 = x + αkdx,k.

Step 4: Terminate if line search has found a solution lying too close to the previous

one in the space of x, i.e. if |αkdx,k,i| < εi for all i’s.

Step 5: Solve (1.3) for y and set yk+1 to be equal to that solution. (Such procedure

discards the new solution candidate in the space of y found in Step 2, but that solution

is usually infeasible. This workaround restores solution feasibility.) Go to Step 1.

GRG suits well problems with relatively few decision variables as compared to the number

of dependent variables. Unlike SQP, it sticks closely to the feasible region, and is therefore

recommended in cases of strongly nonlinear h(·)’s. Unlike SQP, it does not rely on second

order derivatives, which results as well in degraded performance for convex problems as in

generally improved robustness.

One of many successful GRG applications worth citing [66] is a case where the optimal

working point of gas network was to be found. However, it turned out there that the routine

in the form given above was far too immature to be useful in practice, even after numerous

70 3. Survey of problems and commonly used optimisation algorithms

upgrades suggested in the literature had been incorporated in the algorithm. Only after the

author had profoundly analysed optimisation results and introduced her own improvements,

algorithm undesired behaviours (like zigzagging and slow convergence) were tamed. One of

important conclusions conveyed there was that commercial implementations of optimisation

routines have substantial added value, and tips and tricks for their effective working are kept

secret by manufacturers.

3.2 Direct search methods

The algorithms discussed in this section are directly value-based, i.e. their behaviour is deter-

mined only by the value of the performance index, without any support of the performance

derivatives. On one hand, the absence of such support must definitely have an adverse im-

pact on algorithm efficiency, especially for medium and large scale problems. On the other, it

improves the algorithm robustness. This tradeoff is different for every algorithm. This is be-

cause different assumptions are made about f(·), and therefore various direct search methods

may be efficient at the cost of robustness, and vice versa. Another important direct search

methods feature that wins them many eager supporters is that, giving up altogether the idea

of gradients, they could be applied for combinatorial optimisation.

The evident drawback of direct search methods is their rapidly decreasing efficiency with

the growth of problem dimension. Fortunately, in simulation-optimisation problems similar

to ours the number of decision variables is moderate or it can be made moderate by some

sort of aggregation. To start with, one may consider applying direct search in its possibly

the purest and simplest imaginable form: the random search technique, which is choosing at

random a trial point from Dx and evaluating f(·) there until a satisfactory solution is found.

Fortunately, very few optimisation problems require resorting to such a brute scheme.

Powell algorithm

There exist a couple of routines stemming directly from Newton methods, and following the

idea of subsequent directional minimisations. Once the starting point x0 is given, there is

always the dilemma how to generate directions for the line search subroutine. There are several

approaches: Gauss-Seidel, Rosenbrock, Hooke-Jeeves [41, pp. 97–99 and pp. 106–109]. In yet

another one of them, the Powell routine [41, pp. 113–123], the Hessian matrix approximation,

used in next line search direction preparation, is made using solely the data from the last

dim x searches. The routine maintains quadratic convergence but its drawback is that search

directions tend to become linearly dependent, which has to be cancelled by periodic algorithm

3.2. Direct search methods 71

restarts. The algorithm for a problem of size N is as follows:

Step 0: Let x0 be a given starting point.

Step 1: Create the set of directions R = {d1, . . . , dN} and initialise its elements to

search space versors, di := ei.

Step 2: Perform N line searches; start a single line search i = 1, . . . , N from the point

xi−1 along di and call the result xi. Stop either if the maximum number evaluations

of f(·) has been reached or if f(xi) > (1 − ε)f(xi−1), ε being the relative performance

index value improvement.

Step 3: Remove d1 from R and shift the remaining directions, di := di+1. Complete R

with dN := xN − x0.

Step 4: Perform an additional line search from xN along dN and call the result x0.

Stop if the termination criterion (like in Step 2) is satisfied; else return to Step 1.

This routine does not require exact line searches. A choice of line search algorithms and

practical suggestions for the implementation can be found in [90, pp. 397–408]. Powell method

acquires quadratic approximation of f(·) with all its consequences: suboptimality of the so-

lution and vulnerability to performance index singularities, although mitigated somewhat by

periodic method restarts.

Nelder-Mead simplex search

Nelder-Mead simplex search routine starts here a suite of various heuristic optimisation ap-

proaches. The workings of heuristic methods, like Nelder-Mead simplex search, do not have

such strict theoretical foundations and assumptions (e.g. Taylor series approximation, Karush-

Kuhn-Tucker (KKT) optimality conditions) as the gradient routines, of which some have been

presented above. However, heuristic routines showed to be very efficient in practice, despite

the lack of appropriate convergence proofs. At the cost of much degraded performance in reg-

ular optimisation problems, they help where deterministic routines fail. Also, easiness of their

implementation cannot be neglected as it encourages modifications of the original algorithm

that can be done even by practitioners with weak mathematical background.

Nelder-Mead routine [77] maintains in each its step a simplex, i.e. a set of N + 1 points,

N being the problem dimension. The points constituting the initial simplex vertices may be

picked at random or may be provided from outside. The simplex is potentially transformed in

subsequent iterations by reflection, expansion, contraction and multiple contraction operations

72 3. Survey of problems and commonly used optimisation algorithms

— each of them yields a new trial point (or points) which, hopefully, can replace bad vertices.

Therefore, each iteration starts with an attempt to reflect the worst (in terms of f(·) value)

vertice. If quality of so obtained trial point is promising, another trial is made to expand

the simplex farther in that reflection direction. On the contrary, if no progress is detected,

a contraction is made: the unpromising vertice collapses towards the simplex centre. Finally,

if the contraction operation does not help to find any better point to replace that worst vertice,

a multiple contraction towards the best simplex node is executed for all other simplex vertices.

In optimum vicinity multiple contractions make the simplex small (in terms of its radius) and

the termination criterion is finally passed. Therefore, the algorithms goes as follows:

Step 0: Given a set X = {x1, . . . , xN+1} of simplex vertices, evaluate f(·) at each of

them.

Step 1: Find vertice xh such that ∀i=1,...,N+1f(xh) ≥ f(xi), and vertice xl such that

∀i=1,...,N+1f(xl) ≤ f(xi). Calculate centre c of the current simplex X deprived of the

worst point, c = 1
N

(x1 + · · · + xh−1 + xh+1 + · · · + xN+1). Stop if f(xh) > (1 − ε)f(xl).

Step 2: Reflection. Make a trial point x̃1 = (1 + α)c − αxh, with α > 0 being the

reflection coefficient. If ∀i=1,...,N+1, i6=hf(x̃1) > f(xi) then go to Step 4, else replace xh

in X with x̃1 and go to Step 3

Step 3: Expansion. If f(x̃1) > f(xl) then go to Step 1. Otherwise make another trial

point x̃2 = −γc+(1+γ)x̃1, with γ > 1 being the expansion coefficient. If f(x̃2) < f(xl)

then replace x̃1 in X with x̃2. Go to Step 1.

Step 4: Contraction. If f(x̃1) < f(xh) then replace xh in X with x̃1 and give x̃1 the

name xh. Make another trial point x̃3 = (1 − β)c + βxh, with 0 < β < 1 being the

contraction coefficient. If f(x̃3) < xh than replace xh in X with x̃3 and go to Step 1;

else go to Step 5.

Step 5: Multiple contraction. Replace every xi in X with 1
2
(xl + xi). Go to Step 1.

The method is more robust than Powell algorithm but in some cases the simplex tends to

‘flatten’ itself against steep slopes of f(·), requiring a form of restart — like Powell algorithm

— e.g. by replacing one vertice with a randomly chosen point. Support of constraints is usually

accomplished through penalty functions. Stop criterion given in Step 1 is only one of many

possible; other popular ones are the maximum number of f(·) evaluations, absolute accuracy,

a certain value of f(·) reached, simplex radius etc.

3.2. Direct search methods 73

Simulated annealing

Simulated annealing routine was first proposed in [71] for stochastic optimisation — but soon

it was used also for deterministic optimisation problems. Unlike simplex search, the routine

works with just one point only in each iteration — that is, with current solution approximation

xn. It makes attempts to improve it in step n + 1 by choosing at random some candidate

point x̃n+1 in the neighbourhood of xn, and accepting it according to the following formula

xn+1 =

����� ����
x̃n+1 if f(x̃n+1) < f(xn) ,

x̃n+1 with probability exp � −f(x̃n+1)−f(xn)
θn � if f(x̃n+1) > f(xn) ,

xn with probability 1 − exp � −f(x̃n+1)−f(xn)
θn � if f(x̃n+1) > f(xn) ,

(3.10)

where θn is the current ‘temperature’, i.e. a coefficient allowing the algorithm to climb uphill

in search for global optimum. θn must decrease to zero as the algorithm proceeds. The routine

extreme simplicity makes it applicable for very wide range of problems, including stochastic

and discrete ones.

CRS — Controlled random search

CRS routine, presented in its original form in [91], is similar to Nelder-Mead simplex search

in that it maintains a pool of points and produces new trial points by reflections of the worst

point in the pool. However, CRS pool is much bigger than dim x + 1, and the reflection

centre is calculated for a small subset of points randomly chosen from it. This feature gives

CRS globality flavour that neither Powell nor Nelder-Mead have. The original CRS algorithm

(called here CRS1 since it was the starting point for many later modifications) is as follows:

Step 0: Make the initial pool X = {x1, . . . , xN} of distinct points, where N � dim x

by picking them at random from the optimisation domain. Evaluate f(xi) for every

i = 1, . . . , N .

Step 1: Find in the current pool X a point xh with worst performance index, and xl with

best performance index there. Stop if some termination criterion (e.g. |f(xh)−f(xl)| < ε)

is satisfied.

Step 2: Choose at random dim x + 1 distinct points from pool X that will constitute

a simplex X̃ = {x̃1, . . . , x̃dim x+1}, i.e. a subset of X.

Step 3: Calculate a trial point x̃ = 2c − x̃dim x+1 by reflecting x̃dim x+1 through centre

c = 1
dim x

�
dim x

i=1 x̃i.

74 3. Survey of problems and commonly used optimisation algorithms

Step 4: If x̃ is in the search domain, then evaluate f(x̃), else go to Step 2.

Step 5: If f(x̃) is worse than f(xh) go to Step 2.

Step 6: Replace xh in X by x̃ (i.e. set X := {x̃} ∪ X\xh) and go to Step 2.

This basic scheme, CRS1, was followed by numerous modifications (nicely described in

[1]), made to improve efficiency. In the first modification, CRS2, particularly widely cited, the

simplex is not chosen completely randomly but is forced to contain xl:

Step 2: Make a simplex X̃ = {xl}. Enlarge simplex with dim x distinct points chosen

at random from pool X.

Such change accelerates convergence, which is considered the weakest point of CRS, especially

if the solution lies on constraints (consider that the only means of handling x̃ are to accept it

or to reject it altogether; no e.g. projection is envisaged).

Further modifications of CRS aim to improve convergence by activating occasionally some

local algorithm, be it the very Nelder-Mead search (in CRS3), intensified sampling around x̃

performed when f(x̃) < f(xl) (CRS4), gradient-based search (CRS5) or quadratic interpola-

tion of f(·) (CRSI). From the point of view of this dissertation it may be significant to observe

that local routines are activated relatively easily, e.g. already if x̃ is better than N
10

-th best

point in X [92], and that some CRS’s switch perpetually between local and global (original

CRS) routines.

Like in Nelder-Mead, support for implicit constraints is usually accomplished through

penalty functions. (It could also be effectuated in way usual to CRS, by discarding x̃, but

this is not done since no one knows how seriously the implicit constraints reduce the chance

of producing a feasible x̃.)

COMPLEX — Constrained simplex search

COMPLEX routine [20] is an important upgrade of Nelder-Mead simplex search that has

a built-in support for explicit and implicit constraints provided that the constrained domain

is convex. It works by manipulating in each iteration a pool X of points (also referred to as

a complex of points), where ¯̄X ≥ dim x + 1. Bigger number of points than in Nelder-Mead

routine helps in maintaining complex regularity — but it is not as big and costly as for CRS.

The point pool is created by a series of augmentation operations performed around some initial

feasible point x0. In each iteration the worst point in the pool is reflected — and its image

is moved back towards the reflection centre until it outperforms the worst point. Handling

3.2. Direct search methods 75

of violated implicit constraints is accomplished through the same mechanism of backtracking

towards the reflection centre. COMPLEX algorithm can then be written as follows:

Step 0: Given an initial feasible point x0, create a pool X = {x1, . . . , xk}, k ≥ dim x+1

by a series of augmentation operations. Initially, X = {x0}. After the augmentation,

evaluate f(·) at every element in X.

Augmentation. Calculate centre c of X. Choose at random a trial point x̃ such

that explicit constraints (1.4a) are satisfied. If x̃ satisfies also implicit constraints

(1.4b), include x̃ into the pool, X := X ∪{x̃}. Otherwise move x̃ gradually towards

complex centre, x̃ := 1
2
(x̃ + c), until (1.4b) is satisfied. Then include x̃ into X.

Step 1: Terminate if no better solution was found in five subsequent algorithm steps.

Step 2: Find the worst (in terms of performance value) point in the current set X and

call it xh. Calculate centre c of X\xh. Compute a trial point x̃ = c + α(c − xh), where

α is some reflection ratio. Modify x̃ by setting values of its elements violating bounds

(1.5a) to those bounds values.

Step 3: Check if x̃ satisfies also implicit constraints (1.4b). If not, move x̃ gradually

towards complex centre, x̃ := 1
2
(x̃ + c), until (1.4b) is satisfied.

Step 4: If f(x̃) < f(xh) then set X = {x̃} ∪ X\xh and go to Step 1. Else set

x̃ := 1
2
(x̃ + c) and go to Step 3.

It is clearly seen that the actual complex centre is the ultimate instance and remedy in case

of insufficient progress as well as constraints violation — the trial point x̃ always converges

there. Besides, no randomisation takes place after the algorithm has initialised — no wonder

then that COMPLEX is less explorative than CRS. COMPLEX is recommended to be run

several times in the final stage of optimisation, since results from its single run only may turn

out to be unreliable.

Tabu search

Tabu search [48] was proposed rather as a tactics ensuring effective operation of some local

search algorithm, by discouraging costly re-evaluation of f(·) at trial points already ‘examined’.

Tabu search keeps history tables for the solutions found so far, and utilises them to guide the

local search procedure so that getting trapped into a local solution may be avoided. In its

rudimentary version, tabu search routine is as follows (index k denotes the current algorithm

iteration):

76 3. Survey of problems and commonly used optimisation algorithms

Step 0: Initialise with some initial solution xk, k = 0, with the best solution xl = x0

and with an empty list A of forbidden local algorithm ‘moves’, i.e. pairs of consecutive

solutions (xj, xj+1).

Step 1: Let local routine generate new solution candidates {x̃1, . . . , x̃N }. Evaluate f(·)

for each of them.

Step 2: Find best solution candidate not being result of any recorded move;

x̃l = arg minx̃i, i=1,...,N f(x̃i), (xk, x̃i) /∈ A. Set xk+1 = x̃l unless there is some unusually

good x̃j in A; in such case accept xk+1 = x̃j unconditionally.

Step 3: Set xl = xk+1 if f(xk+1) < f(xl). Insert (xk, xk+1) at the beginning of A;

truncate A to a predefined length. Go to Step 1.

The above routine prevents frequenting old optimisation paths save cases when this brings

really improved solutions (which might be important in stochastic optimisation). The list A

of tabu moves is updated in every iteration so that ‘stale’ moves expire. This basic scheme is

usually supported with some kind of long-term memory in the form of, say, a list B, recording

from the very beginning visiting frequencies for each solution approximate xk. Usually, A and

B bias the selection of {x̃1, . . . , x̃N} so that non-visited points are preferred.

Tabu search is a very flexible idea; much of its properties depend on the exact strategies for

forbidding and promoting trial points, and on the kind of the local search routine controlled by

tabu search. Tabu search is used mostly for discrete problems, although there exist guidelines,

by its author, for applications to continuous problems. The crucial tabu search topic is the

definition of a neighbourhood of some trial point; the choice of space topology may largely

determine the routine performance — like in case of evolutionary algorithms, the next and

last to be presented in this section.

EA’s — Evolutionary algorithms

It is a large family of heuristic routines whose construction was inspired by natural evolution

of species observed in the nature. The paradigm of natural selection of better fit individuals is

utilised in the context of minima searching, with trial solutions corresponding the individuals

and with performance function corresponding individual’s fit to environment. Evolutionary

algorithms [7, 73, 12] work by iterative modifications of a pool of points (called population) in

reproduction, genetic operations and succession phases. Reproduction creates a new pool of

trial points (called offspring) from the current pool. Next, the offspring is subject to genetic

operations. Finally, in the succession phase, individuals are chosen from the modified offspring

3.2. Direct search methods 77

and constitute the new generation. Termination criteria may depend on a specific problem, but

mostly they are similar to those for direct search algorithms presented above. EA framework

can be put as follows:

Step 0: Make the initial population Xk, k = 0. Evaluate f(·) for each element of Xk.

Step 1: Stop if some termination criterion met.

Step 2: Reproduction. Produce the offspring O from Xk. Reproduction process is

usually biased to promote better fit Xk elements to the offspring.

Step 3: Genetic operations. Modify O by application of various operations. (Variety

of operations can be very big: from exactly imitating processes made known by genetics

to developing operations tailored to a concrete problem.)

Step 4: Succession. Qualify individuals from O that will form the population Xk+1.

Evaluate f(·) for each element of Xk+1. Go to Step 1.

According to the degree processes observed in nature are imitated, EA can be classified

into genetic algorithms, evolutionary strategies, and others (e.g. evolutionary programs, ge-

netic programs). In genetic algorithms the reproduction phase is mostly accomplished by

application of roulette-wheel selection mechanism, which diversifies probabilities of an indi-

vidual being promoted from Xk to O, depending on that individual’s fit. Genetic operations

used are crossover and mutation; they assume attributes of an individual coded binary to be

the chromosome — and act traditionally. Qualification is just setting Xk+1 := O. Evolu-

tionary strategies work similarly, but the coding of an individual’s attributes and the genetic

operations are rather adapted to a given class of problems.3 There exist many evolutionary

approaches to narrow classes of problems. They are loosely related, in program structure and

in applied operations, to genetic algorithms. Those specialised algorithms have been devel-

oped e.g. for the problem of a finite automaton design, or for the problem of optimal algorithm

design [7, pp. 18–19].

Broad literature on EA’s proves their efficiency, robustness and innate stability — they

give encouragement for self-made algorithm amendments and experiments. Evolutionary algo-

rithms are global, have support for box constraints on x, and the remedy for a ‘child’ violating

constraints on y can be given instantly: discard the one and try another. Random nature of

most operations is an ally here.

3To give an example, in case of continuous optimisation problems, the mutation is disturbing an individual

coordinates by a random vector; the crossover is calculating a centre of parents’ locations.

78 3. Survey of problems and commonly used optimisation algorithms

3.3 General-purpose simulation-optimisation solvers

With the main goal of solving problems from Chapter 2 on mind, it would be valuable to

see how the routines presented above are utilised in professional solvers. The description of

selected optimisation tools follows here. The selection was made with purpose to present first

much appreciated AMPL and GAMS modelling and optimisation environments to see how

they relate to the specifics of our problems; then to browse through less general but better

fitting solvers, and to end up with description of a tool seeming to be the fittest to our case.

The most desired solver properties are: co-operation with the user-supplied modelling module,

no need for any derivatives to be supplied, support for simulation crashes.

AMPL and GAMS: various optimisation routines, one modelling

language

AMPL and GAMS are competing complete modelling and optimisation environments. They

both provide advanced proprietary languages the model and problem definitions must be ex-

pressed in. Once this is done, the user may try employing a vast number of offered routines for

the optimisation task. Therefore, both AMPL and GAMS provide a unified way of accessing

widely differing solvers, from classic LP to e.g. mixed integer nonlinear programming with

discontinuous derivatives [2, 22, p. 98].

Specifically, nonlinear solvers are suggested for the problems of our concern. Not acciden-

tally, the first one proposed by AMPL as well as by GAMS is CONOPT [35] — a commercial

GRG implementation. Another solver available in both environments is MINOS [22, pp.

201–224] — a projected Lagrangian algorithm working in fashion similar to SQP. There are

a number of others, which can be tested effortlessly with no need to re-write the interface

between the model and the solver. The decision which one to choose is left completely up to

the user; if none is chosen, then a default routine is employed. No automated and adaptive

routine selection strategy is implemented.

AMPL and GAMS are praised for being excellent tools for rapid prototyping and appropri-

ate solving technique selection. However, they are completely unfit to handle the optimisation

jobs described in Chapter 2. First, because of the requirement that the model must be coded

in a specific language.4 Second, even if a problem is to be coded in using that proprietary

language, none of the underlying solvers has support for exceptions ensuing during the model

4Actually, this could be done in the case of simplified IP market model. AMPL and GAMS languages have

loop and branch constructs; they also support tabelarised expressions with tables located conveniently outside

the main model-and-problem definition input file.

3.3. General-purpose simulation-optimisation solvers 79

computation (e.g. the domain errors for square root or logarithm functions). As a matter of

fact, for some solvers [35, pp. 15–16] such undefined result gets replaced by GAMS with ‘some

appropriate real number’ — but this is considered to be the last resort, and the optimisation

terminates if such cases reappear.

Simulation-optimisation tools

GAMS, AMPL, and alike, are excellent for prototyping and educational purposes. However,

when business and industrial applications with closed-source modelling modules come into

play, a niche appears for optimisation tools designed for specific classes of problems. Those

tools fall in middle way between GAMS-like environments and in-house adaptations of stan-

dard routines for specific problems that were cited throughout this chapter and Appendix A.

From a number of such tools, CONSOLE-OPTCAD [39], SPRNLP/SOCS [106], DOT [34],

OptdesX [83] and OptQuest [81] have been chosen as good representatives.5 All of them provide

an interface to user-supplied simulation routine, which is supposed to return only the value of

the performance index. No explicit gradient information is required from the simulator; all the

derivatives necessary for internal optimisation routines are estimated. As regards used optimi-

sation routines, they vary accordingly to class of problems handled by a tool. Most of above

mentioned products, except for OptQuest, are design optimisation tools. They use all-feasible

SQP variants (CONSOLE-OPTCAD, SPRNLP/SOCS), alternatively accompanied with GRG

(OptdesX), or with GRG and SLP (DOT). OptQuest inclines towards solving business, finan-

cial and scheduling problems, being rather discrete tasks with indeterminism involved. The

optimisation routines used are tabu search and scatter search — another global optimisation

algorithm by the tabu search inventor.

It must be emphasised that none of the above tools supports simulation failures. It does

not mean, however, that their creators are not aware of reality. OptdesX manufacturer writes

[83, p. 177]: ‘The vast majority of program crashes occur inside the ANAFUN6 subroutine. This

happens when either the analysis software has not been fully debugged, or OptdesX drives to

some design that the analysis routine cannot handle [. . .].’ However the only suggested there

remedy to such a situation is to restrict search space even more, and to debug the simulator

software. It is important to remind here that constraining the decision variables too eagerly

may cut off valuable regions from the domain; it is also worth mentioning that in most cases

the simulator routine is in fact a black box, and no code modifications are possible.

5A place worth suggesting if one is going to investigate simulation-optimisation tools is the home page of

NEOS — a powerful network optimisation service [78].

6That is the pre-defined name for user-supplied simulation routine.

80 3. Survey of problems and commonly used optimisation algorithms

Despite its limitations and quite old technology, OptdesX should be distinguished among

the selected tools merely for its creators’ awareness of the nature of third-party simulators.

As it turns out in the following section, supporting simulation crashes was not the idea to be

given up completely.

Epogy: a complete design optimisation solution

Epogy [111] can be rightfully classified as yet another simulation-optimisation tool. However,

it possesses a number of valuable advantages that make it deserve a separate section. Needless

to say, it has a number of built-in optimisation routines, supports user-delivered simulation

code, and, whenever necessary, performs estimation of performance index derivatives. What

distinguishes Epogy are three things:

• The most appropriate optimisation routine to be run (and the values of that routine

parameters) is chosen automatically;

• The optimisation runs in stages, i.e. the solution obtained from one routine is utilised

as the start point for another one;

• Unified support for simulation crashes is implemented.

LP, Nelder-Mead simplex search, EA, SQP and Monte Carlo are the built-in Epogy algo-

rithms. It is evident that they complement mutually and, run in sequence, can cope with

most of design optimisation problems. Epogy innovation is the automatic guess being made

about the type of f(·) — in case when no hint is given by the user — followed by automated

selection of the best fitting routine. Moreover, routine parameters (e.g. termination criteria

or differences used in gradient estimation) are also adjusted adaptively. This mechanism is

driven by a sort of superior genetic algorithm (mentioned in [111] only vaguely). The mixture

of basic algorithms that Epogy manufacturer reports to behave particularly well, for the kind

of problems like ours, is EA followed by Nelder-Mead search, although a user is free to suggest

an arbitrary algorithm sequence.

An important Epogy feature is the simulation interface — in particular the assumption

that simulation is liable to fail. If Epogy, while parsing simulation output files, fails to retrieve

a complete y, some default values (supplied earlier by the user) are used to calculate f(·).

Such faked performance index value at defective trial points is usually much higher than at

neighbouring ‘correct’ designs [112]. The important lesson that can be learned from Epogy is

that a successful search for a solution can be performed without any special arrangements in

the optimisation routine concerning cases when simulation fails. At least, such is might be the

3.4. Conclusions on others’ and the author’s approach for problem solving 81

first conclusion — there will be no next one since the detailed description of Epogy algorithms

is not available.

3.4 Conclusions on others’ and the author’s approach

for problem solving

The following conclusions can be made about existence of simulation-optimisation problems,

and about applicability of optimisation approach followed (or suggested) by other authors.

First, it becomes quite evident that optimisation problems with performance index determined

by simulation output have divided into two branches. The first, widely called just ‘simulation

optimisation’ refers to the class of problems with intrinsic model indeterminism, and with

decision variables often taking values from discrete sets. The other branch, frequently termed

‘design optimisation’, emphasises the simulation noise (the effect of sophisticated simulator

numerics) as being the main problem.

Depending on the assumed properties of the problem (differentiability, convexity, mono-

tonicity), various optimisation algorithms are applied in both branches. Since an algorithm

working always relies on some assumptions about the problem, and exploits those assump-

tions in order to reach maximum efficiency, it is important to be realistic while deciding as

to what algorithm to apply to a certain problem. Not surprisingly, for problems considered

as difficult, direct search algorithms are used equally widely in both branches. In order to

mitigate computational effort, rough and fast alternative models are the commonplace [87, 47]

that assess the performance index value before (or instead) calling the accurate simulation. In

cases when the problem appears less difficult, either naturally or after model simplifications,

the applied optimisation routines divide in two branches. For stochastic optimisation, either

stochastic approximation is exercised for continuous problems, or direct search is still applied

for discrete problems. For design optimisation, gradient routines are applied.

So far, no off-the-shelf optimisation tool has been found that would fit all our problems

presented in Section 2, and particularly the problem of power plant set-point optimisation —

due to simulation failures. Such conclusion comes as no surprise since it is widely emphasised

in the literature that engineering problems require deep initial insight and analysis prior to

selection and application of an optimisation routine. However, one of the tools, Epogy, exhibits

features that place it closest to the direct application to our problems. Those features are also

instructive if development of own optimisation approach is considered.

Such is the course taken by the author: to develop his own optimisation approach for the

class of difficult problems. There are several reasons to do that. The first is scientific research

82 3. Survey of problems and commonly used optimisation algorithms

flavour such development would certainly have. The second, is freedom such research would

offer; being confined e.g. to what Epogy — the best fitting tool — imposes and keeps secret,

could become a limit. The third and last, the ‘discovery’ of Epogy happened in the middle

of research, when most of the numerical routines and — last but not least — the laborious

simulator interfaces had been implemented. Such author’s course is directed by a proposed

alternative approach to solve difficult simulation-optimisation problems, which follows in the

next section.

Proposed approach to solve simulation-optimisation problems of un-

known nature

Having outlined the complications encountered by the author in practical optimisation prob-

lems and the current perception of simulation-optimisation by scientific and engineering soci-

ety, it is the right time to start argue Thesis 2. Ideas of Thesis 2 appear as much intuitive,

common-sense and obvious as unprovable by mathematic apparatus. This is because they

postulate heuristics (for algorithm selection, modifications and switching) to be placed on

the top of other heuristics, which present the selected algorithms themselves. Obviously, the

postulated overlying heuristics may not be efficient for some malicious practical problems —

but the main goal of the proposed approach is to end up with robust optimisation algorithm,

its efficiency being not a major concern.

Thesis 2 is specified below by proposition of an approach to solve simulation-optimisation

problems with implicit and feasibility constraints and with the performance index of generally

unknown properties. The proposed approach is as follows:

1. Use as much a priori knowledge of the problem as is available in order to select a couple

of standard optimisation routines out of those well recognised (presented in Chapter 3).

It is suggested that selected routines be simple to modify. The routines will be run

sequentially, the next one taking over the result from the previous one. Take into con-

sideration availability of the parallel computing environment; in such case prefer rather

inherently parallel or easily parallelisable routines. Selected routines should jointly be

able to support problem characteristics in all stages of optimisation, which are: initial

search for global minimum, intermediate search with support for constraints, final search

with linearised both performance index and the constraints.

2. Try to obtain a model and formulate optimisation problem simpler than the original

one (e.g. by taking away a part of modelled system) but preserving the original model

3.4. Conclusions on others’ and the author’s approach for problem solving 83

features. Use this model for testing, exact switching criteria construction and ad hoc

algorithm modifications.

3. Prepare appropriate programming interface between simulation and optimisation mod-

ules, insulating them mutually in case of a failure of either of them. Apply techniques

allowing easy porting to parallel execution.

4. Run chosen routines with rather tight termination criteria to obtain some good solution

that will become the reference point in further tests. Observe problems appearing in

the run: simulation failures, infinite loops in optimisation, premature termination. In-

vestigate what may be their reasons. Consequently, make modifications to routines as

well as to simulation-optimisation interface. Examples of such modifications may be:

support for failures, implicit constraint violations. Also, adjust algorithm parameters,

mainly the termination criterion. Employ other optimisation routines as new important

problem features are revealed that cannot, or should not be, digested by the routines

being currently in use.

5. Work out efficient criteria for switching to another routine in the sequence. The hybrid

should in general be robust and effective, and the criteria should first take into consider-

ation whether the model can already be supported by the next routine in the sequence.

Efficiency is the secondary issue.

6. Make use of parallel environment (if available) and apply the constructed hybrid opti-

misation algorithm to the original problem or to other problems of the same class.

The above approach is reflected in the account of solving the three practical problems that

follows in Chapter 4 and Chapter 5.

Chapter 4

Solution of power plant set-point

optimisation problem

Taking as an example the problem of power plant set-point optimisation, one may try to point

out most frequent causes that make the optimisation task unnecessarily difficult. Therefore,

it is shameful but necessary to admit here that complications in optimisation may sometimes

have their origin in

• Errors in simulator operation — e.g. infinite loops that may be entered for certain

simulation inputs without any preliminary checking;

• Inability of the simulator to work autonomously, i.e. without human intervention;

• Very little or no a priori knowledge of the problem;

• Incorrect optimisation problem formulation — e.g. specification of redundant decision

variables or classification as decision a variable unrelated to the performance index value,

or incorrect constraints specification.

The reasons for such situation can be twofold. The more common case occurs when the party

interested in coupling simulation with optimisation is the modelling module author who has

got used so much to simulator imperfections that they do not disturb him in manual simulator

operation. Moreover, the simulator author is little acquainted with optimisation theory and

practice — and the problems result. The more extreme case is a user equipped with off-the-

shelf simulation software, and determined to combine it with optimisation routine quickly and

having as little to do with the problem specifics as possible.1 Unfortunately, such observation

1Obviously, in both cases the difficulties would not appear the problem itself were simple. Nowadays,

however, this happens rarely — and most problems must be ‘tamed’ before being submitted to optimisation

solver.

85

itself is not going to improve the situation a bit. Such state is likely to persist — and it

appears at various spots in all practical problems considered here. Since IHE simulator is the

most affected case it is given here a particular attention.

As it was said, IHE problem is the biggest opportunity — and the biggest challenge — to

construct an effective solving approach. It is so because of the simulation failures (confirmed

already by manufacturers of OptdesX and Epogy [83, 111] to be commonplace in optimisation

practice) and because of freedom for experimentations with any code running outside the

simulator. No other of the considered practical problems offered such working conditions.

Algorithm initial selection

Let it be reminded that at the time initial optimisation algorithm selection was being made

no detail about the problem nature was known2 except for the problem specification itself

and for the target operating conditions, which were as follows. The software is planned to

be run in a plant control room, and therefore no parallel computing environment is assumed.

The software is to help the plant controlling staff in decision making, and not to operate

autonomously in a real-time system, so its speed is not a crucial issue. Nevertheless, if the

operation speed is to be unsatisfactory, creation of distributed environment, e.g. by purchasing

more computer units, is possible.

Like it was presented in Section 2.1 in case of power plant set point optimisation, there

is a simplified model at disposition. Test model corresponds to its original, the plant model,

with the exception that it is deprived of three one-stage turbines and the accompanying

devices like regeneration system or collectors. The pumps have been removed, too. However,

most nonlinear elements, i.e. turbines (and, potentially, boilers) remain as well as remains

performance index formulation. Model simplification reduces the search space dimension from

21 to 9, and the average simulation time from 0.5 to 0.2 sec. Such simplified model is used

here for all optimisation tests. Next, the resulting hybrid algorithm is verified for the target

full size model.

The initial choice of algorithms is affected by pre-existent competitive and complete so-

lutions in the field, and by specifics of IHE simulator. Most of the commercial competitive

products3 for power systems modelling and optimisation use system elements described by far

2The characteristics of performance index function given in Section 2.1 are only the effect of optimisation

attempts. They should be concerned as a kind of optimisation results; however, they have been presented first

to put more emphasis on the phenomenon of feasibility constraints, and on their significance.

3 An example of a complete business solution for advanced process modelling and control is NOVA, by PAS,

Inc. [84]. It represents the line of modelling and optimisation tools that was introduced in Section 3.3; the

86 4. Solution of power plant set-point optimisation problem

simpler models than those of IHE. Competitive products performance is satisfactory only for

weakly coupled turbosets, e.g. those not interlinked by common steam collectors, unlike ours.

Simple system structure adds to element model simplicities and sometimes allows for applica-

tion of linear optimisation routines, which is also the approach suggested earlier by IHE itself

[95, pp. 95–114]. Instead, IHE modeller applies nonlinear models — and nonlinearity may

breed local optima. Considered that, one global non-gradient routine is chosen for preliminary

optimisation, and one local gradient routine is chosen for final optimisation stage. The task

of the former one is to overcome consequences of nonlinear model application; the latter is to

operate on a linearised model hopefully expected to behave like its commercial counterparts.

CRS2 (cf. p. 73) is chosen as the global routine. It requires minimum knowledge of the

problem, no start point and, after the initialisation phase, generates new solutions one by one

(i.e. not in flocks like EA does). Simultaneously, its parallel implementation, if need be, is

straightforward. Other direct search routines are discarded, either for not being global (Powell)

or ‘not global enough’ (COMPLEX), or for their wide-ranging applicability covering discrete

problems (tabu search, simulated annealing) — possibly at the cost of degraded performance.

The choice of local gradient routine is determined by the problem formulation. The ratio of

the numbers of decision and dependent variables, and the way constraints are specified, makes

GRG the unbeaten candidate. SLP is excluded because of infeasible solution approximations

it produces, which could jeopardise its working given high model nonlinearity. SQP exclusion

happens for the same reason, especially that it makes quadratic objective approximations,

which would probably be all misleading in our case. It is hoped that in the vicinity of the

optimum gradients of performance index and of constraints could be easily estimated by e.g.

finite difference formula, and such estimation will hold in sufficiently big region.

model is defined in a proprietary language (with an option to plug in user-supplied routines), the optimisation is

driven by a sort of SQP solver adapted to handle non-smooth problems that are admitted by the manufacturer

to appear ubiquitously in industry and business. The investigation made by IHE shows that PAS products

adapted and offered by Honeywell for plant control use much simplified models as compared to those considered

here. NOVA language has been also used by IHE for direct implementation of IHE modelling methodology.

Since model solving in NOVA utilises (2.3), failures in (1.3) solving do not leave any trace as to which model

variable could have caused the simulation failure. Moreover, NOVA optimisation engine has turned out to be

very vulnerable to such failures, and very sensitive to the location of the start point. Generally, it is felt by

IHE that most important parts of modelling and optimisation are carried out in NOVA without possibility of

being inspected by a user.

4.1. Optimisation tests and algorithms modifications 87

Termination criteria selection

A cursory look at presented optimisation routines specifications brings a conclusion that they

are often more precise about some internal parameters, usually set by the rule of the thumb,

than about the termination criterion itself. In this regard much is left to the user, although

there is a trend (in case of design optimisation tools — cf. p. 79 and following) to relate it to

user-supplied estimate of f(x?). There is also another reasonable habit to let the algorithm

work until no progress is made in some time window. Apart from that, there are the usual

absolute-improvement or relative-improvement criteria comparing f(xk) and f(xk+1).

Since for set-point optimisation problem, similarly to optimal pricing problem, no f(x?)

estimate is delivered, the relative-improvement termination idea is dropped. Instead, the ideas

of time-window improvement and absolute improvement are adopted and consequently applied

for all tested routines. Therefore, an algorithm stops if:

• Performance index evaluated at the best point in the pool differs from performance index

evaluated at the worst point in the pool by εA (absolute accuracy);4

• Performance index evaluated at the current solution estimate differs from performance

index evaluated at the solution estimate w iterations ago by less than εI (minimum

improvement);

• The number of performance index evaluations exceeded kS.

4.1 Optimisation tests and algorithms modifications

CRS adaptations to simulation failures; results

First of all, CRS5 was started with no initial point given and with virtually no termination

criterion, save kS = 100, 000. Such tests of very high computational budget were done to find

a point that might be the test problem solution. Unfortunately, at the very beginning of the

optimisation process sudden simulation failures broke the computation altogether. Modifica-

tions had to be made then as well in the simulation-optimisation interface (to intercept failure

signals) as in CRS itself, to support such cases. There are two possibilities of handling such

failure: either to drop the trial point for which the simulation fails (i.e. treat it the same way

4Criterion used only if applicable.

5For CRS, implicit constraints are represented by penalty function calculated using city metric norm of

r(ay, y, yL, yU) with r(·) defined as in (2.7), which adds to the actual value of f(·).

88 4. Solution of power plant set-point optimisation problem

εA\ ¯̄X 32(dim x + 1) 16(dim x + 1) 8(dim x + 1) 4(dim x + 1)

10−6
1.648

100000

1.647

100000

1.764

100000

1.893

33760

10−5
1.648

87840

1.648

76810

1.720

72071

1.875

4652

10−4
1.648

92011

1.648

53949

1.733

36893

1.924

3940

10−3
1.666

58478

1.691

32453

1.850

2969

1.897

820

10−2
1.812

4141

1.828

1977

1.855

927

1.922

404

10−1
1.853

1898

1.872

894

1.876

442

1.942

235

Table 4.1: Results of test problem optimisation with CRS algorithm for various number ¯̄X of points

in the pool and for various value of εA in termination criterion. The average value of f(·) (bold) for

CRS solutions and the average number of f(·) evaluations (italics) are calculated for each εA and ¯̄X

combination from four CRS runs. (The average of 100000 denotes that the maximum number kS of f(·)

evaluations has been exceeded at least once in a series.)

as points violating explicit constraints), or to accept the point assigning it infinitely high value

of f(·). Mode of handling simulation failures is made an extra CRS option.

With those changes, CRS was run for each combination of several εA parameter values and

different number of points in CRS pool. The average f(·) value and average number of f(·)

evaluations for this experiment are given in Table 4.1. Those results should be considered as

very rough estimates of CRS performance — first, because of the small number of optimisation

repetitions, and second, because CRS is not fit nor designed to carry out the optimisation

process to the very end, especially if the solution is to lie on the constraints. Nevertheless,

moving diagonally across Table 4.1 one can easily see that the solution quality is obtained

at the cost of many evaluations of f(·). There is only the question where lies the reasonable

compromise between them.

4.1. Optimisation tests and algorithms modifications 89

εA\on failure reject x̃ assume f(x̃) = ∞

10−6 1.750 1.739

10−5 1.751 1.733

Table 4.2: Closer investigation of Table 4.1 results: optimisation results for pool size ¯̄X = 8(dim x + 1),

various εA’s and rejecting faulty trial points, or setting f(x̃) = ∞. Average values of f(·) for CRS

solutions are calculated in each case from 20 optimisation repetitions.

εA\on failure reject x̃ assume f(x̃) = ∞

10−6 1.892 1.786

10−5 1.895 1.889

Table 4.3: Closer investigation of Table 4.1, results made as for Table 4.2 for CRS with pool size ¯̄X =

4(dim x + 1).

Since increasing pool size over 16(dim x + 1) apparently does not improve the solution

quality dramatically, impact of the way simulation failures are handled was tested more pro-

foundly for moderate CRS pool sizes. Table 4.2 presents average performance index value for

pool size of 8(dim x + 1) points, and Table 4.3 — for a pool of 4(dim x + 1) points. Generally,

accepting unlucky points as infinitely bad seems to perform slightly better than rejecting them

altogether. By the way, from closer examination of εA impact it comes that setting it to 10−6

or to 10−5 virtually does not influence solution quality.

90 4. Solution of power plant set-point optimisation problem

Let us discuss the best solution obtained so far. It is (cf. Fig. 2.3)

x =

�������������������
�

5.549

5.55

8.5

8.5

54.05

50.95

5.0

5.0

48.0

�	������������������

5.549

0

5.55

x
1

5.55

0

5.55

x
2

8.5

0

8.5

x
3

8.5

0

8.5

x
4

54.05

50

60

x
5

50.95

50

60

x
6

5

0

5

x
7

5

0

5

x
8

48
48

80

x
9

(4.1)

and the value of f(·) there is 1.646. For the convenience of interpretation, the values of

decision variables have been put in (4.1) on rulers. First, it is important to note that CRS is,

in general, a robust routine for it — started without initial point — is able to find a feasible

solution. Average performance index value at that solution is 2.1. Provided big budget,

CRS is in position to find solution much better than that. For solution (4.1) flows through

reduction valves (not shown since they are dependant variables) are virtually zero — this

means that all steam, before it goes to the industrial receptions, is utilised in turbines for

electricity generation. Simultaneously, cost of steam generation is kept as low as possible by

x9, powering less efficient boiler, set to lower bound. Similarly for turbines, the more efficient

one receives more steam; x5 > x6. A note must be made on x5 vs. x6 that no further reduction

of x6 can be done in favour of x5 due to implicit constraint violation. This constraint is

illustrated by a graph of feasible area in Fig. 4.1. Worse solutions found in other optimisation

runs make the steam flow through reduction valves or do not load more efficient boiler and

turbine appropriately.6

The solution (4.1) is also better than the test problem solution found by Epogy package.7

Location of the latter one is basically the same, except for flows x5 and x6, equal 53.25 and

51.74, respectively. The best performance value found by Epogy is 1.650. Such value has

been found after some 25,100 evaluations of f(·), and no further improvement was detected

in the following 20,000 evaluations. Like for (4.1), Epogy solution is also located on the brink

6The test problem and its solution have been presented in limited scope in [61].

7The trial version of Epogy package that was used in the optimisation experiment considerably limits the

number of simulation input and output variables. That is why it could be tested only for the test IHE problem.

The product was provided with an infeasible initial solution; simulation failures were represented by a very

high value of the performance index there; no suggestion about the solving methodology or the problem nature

whatsoever was specified on Epogy solver startup.

4.1. Optimisation tests and algorithms modifications 91

53
53.5

54
54.5

50.5

51

51.5

52

1.62

1.64

1.66

1.68

1.7

1.72

1.74

x
5

x
6

f(
)

Figure 4.1: Performance index surface plot for the test problem and for x5 and x6 (above). Plot of

regions where various constraints get active (below; the meaning of colours is the same as in Fig. 2.4).

CRS solution (4.1) location is marked with a triangle, and Epogy solution is marked with a square.

of implicit constraints area (cf. Fig. 4.1), nevertheless Epogy professional optimisation solver

was apparently not able to ‘glide’ along it in pursue of a better point. Such outcome of the

optimisation experiment strengthens the general notion that solving simulation-optimisation

problems is a tough task, in spite of a number of worked out pre- and post-optimisation

techniques (e.g. problem reformulation, response surface methodology, design of experiments,

solution validation etc.)

EA involvement and adaptations to the problem; results

Inefficiency of CRS application for solving test problem as a whole tempts to use EA for the

same purpose. It is particularly interesting to check if applying EA with parameters generally

considered to make it robust, will bring any qualitative improvement. Especially, it is of

interest whether EA is able to find a solution as good as found by CRS, but with considerably

smaller computation budget.

The evolutionary algorithm that is chosen for our problem is in fact an evolutionary strat-

egy. The details of its implementation and selection of parameters values were advised by

colleagues, deeply and for long time involved in practical applications of EA’s for both power

system [33] and for microwave circuit [8] optimisation problems. The emphasis in algorithm

design was put on its simplicity and generality, and not on its adaptation to any particular

92 4. Solution of power plant set-point optimisation problem

problem. Therefore, trial point coordinates are assumed the ‘genome’ of an individual. Con-

sequently, appropriate genetic operations, crossover and mutation, are adopted: the crossover

produces a ‘child’ which is a centroid of its ‘parents’, and the mutation is disturbation of ‘child’

coordinates by some random variable. The reproduction is accomplished trough a series of

comparisons performed in pairs which were randomly chosen from the original population.

The succession accepts unconditionally the offspring; the termination criteria are the same as

for CRS (see p. 87). In detail, the relevant steps of the original scheme (cf. p. 73) are as follows:

Step 2: Make O = {Ot, Xk}, where every element of Ot is winner of a tournament.

Tournament. Choose at random, with uniform distribution, two individuals xa and

xb from Xk. The tournament winner is xa if f(xa) < f(xb), otherwise the winner

is xb.

Therefore, O consists of two distinct subsets, the tournament winners Ot and the whole

current population Xk.

Step 3: Set O := {Ot, Oc}, where every element of Oc is created by crossover.

Crossover. Perform tournament N times in Xk to appoint N crossover participants

x1, . . . , xN . The crossover result is a point x̃ = 1
N

�
N
i=1 xi.

Modify O by mutating each individual.

Mutation. Set x := x + ξ where ξ is a realisation of multidimensional Cauchy

distribution, i.e. p.d.f. for ξi is 1
π

σi

σ2
i +(x−xi)2 .

Set coordinates of mutated points that violate cubical bounds (1.4a) to those bounds.

Settings for our EA are as follows. Population size ¯̄Xk is constant through the algorithm

run and equal 50, which has been suggested as reasonable compromise between explorability

(larger ¯̄X) and efficiency (smaller ¯̄X) for the given problem dimension. The number ¯̄Ot of

individuals entering the offspring directly is set to 30% of ¯̄X. The tournament is simplified

to the extreme in order to avoid any problem-specific traps that could happen for roulette-

wheel algorithm. The number of crossover participants has been suggested 10÷20, and it was

decided to implement the algorithm with the lesser value to improve explorability. Individuals

bred from crossover make the rest of the offspring, i.e. ¯̄Ot = 0.7 ¯̄X. All the above parameters

have been deliberately hard coded into the routine in order to limit the number of parameters

required at the start. The adjustable algorithm parameters are all the termination criteria

4.1. Optimisation tests and algorithms modifications 93

εA\p .95 .995 .9995

10−6
1.713

27225

1.660

72288

1.690

94413

10−5
1.712

32350

1.660

52763

1.694

99075

10−4
1.708

44763

1.661

70088

1.693

96613

10−3
1.711

34388

1.661

61325

1.694

99050

10−2
1.725

59675

1.662

69188

1.765

55400

10−1
1.705

34275

1.661

44975

1.997

5638

Table 4.4: Results of test problem optimisation by EA for various variances of random variable ξ used to

mutate the offspring and various value of εA for termination criterion. The average value of f(·) (bold)

for EA solutions and the average number of f(·) evaluations when the last improved solution was found

(italics) are calculated for each εA and p combination from four EA runs.

and σ in Cauchy distribution, which is to determine EA convergence speed. For convenience,

instead of working with σ, variance of ξ will be represented here by probability p of the event

that xL,i+xU,i

2
+ ξi ∈< xU,i, xL,i > for a single i, i.e. that i-th coordinate of a mutated centrally

located point will stay within the bounds. Therefore, σi is determined by p with the formula

σi = xU−xL

2 tan(pπ/2)
, for all i.

Occasional simulation failures have enforced EA modifications similar to that implemented

in CRS. Therefore, the failure at x̃ can result in x̃ rejection (in such case the operation that

made x̃ is repeated) or in setting f(x̃) = ∞.

Results of EA invocation for the test problem and with parameters as for CRS, where

applicable, are presented in Table 4.4. The major change in configuration of tests underlying

Table 4.4 data, when compared to Table 4.1, is that EA was tested for varying mutation

variance rather than pool size. Moreover, the numbers in italics denote last f(·) evaluation

94 4. Solution of power plant set-point optimisation problem

when progress was made. Such progress reporting method results from the fact that EA

commonly exceeds kS = 100, 000. This should come as no surprise considered that every

individual is subject to mutation — this, combined with problem solution lying on constraints

makes it practically impossible to satisfy εA criterion, since penalty function may easily get

activated. Possibly some other uniform termination criterion should have been chosen in

order to compare CRS and EA effectively. However, by investigating the numbers in italics

in Table 4.4 one still is able to make observations on the progress EA made. First, small

mutations (0.9995) make EA find new, better solutions, almost intermittently (observe small

number of italics in the relevant column). Next, despite that p = 0.9995 appears to improve

solutions steadily, setting p = 0.995 yields results better in terms of their average values,

although new better solutions are not found so often. Apparently, p = 0.995 seems to be

best fitting, at least for the test problem. The termination criteria should probably have been

determined by εI and w, as they ignore worst pool points and pool dispersion (which is quite

natural for problems with redundant decision variables defined).

EA does not prove here superior to CRS, at least as the algorithm to solve alone the

problem. They both are costly; moreover, EA does not find a solution as good as CRS does

(although f(·) for the best one here was 1.656, and it has been found also for p = .995).

The major reason for it is, by all means, notorious mutation of EA individuals; this definitely

qualifies EA rather for preliminary optimisation phase only.

Gradient estimation results

A series of experiments concerning gradient estimation was carried out with twofold purpose:

to find out more about the shape that implicit and feasibility constraints have, and to find

out whether they really allow application of some local gradient routine in optimisation final

stage. The gradient estimation procedure that was used implemented finite forward difference

scheme (A.4), and was enriched with automatic step size adaptation. For each dimension the

following steps are executed to estimate ∇xi
f(x):

Step 0: Initialise with the actual initial step size ci = 3
2
c+

i (c+
i is the step size built

up by previous estimations), and with the minimum and maximum step sizes, cmin and

cmax. Set ci to ci or cmax, whichever less.

Step 1: Compute ĝci
(x) = f(x+ciei)−f(x)

ci
and ĝ2ci

(x) = f(x+2ciei)−f(x)
2ci

, the two alternative

estimates of ∇xi
f(x). If |1 −

2ĝci

ĝci
+ĝ2ci

| < ε then return the estimate and update c+
i

calculating moving average from last 20 gradient estimations (this one included).

4.1. Optimisation tests and algorithms modifications 95

a)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

trial point number

~
g 2(x

)

b)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

trial point number

~
g 2(x

)

c)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trial point number

av
er

ag
e

st
ep

 s
iz

e d)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trial point number

av
er

ag
e

st
ep

 s
iz

e

Figure 4.2: Results of performance index gradient estimation for the test problem case. Plots a) and

b) present ∇x2
f(x) estimates, and plots c) and d) present the average step size c+

2 used for gradient

estimation. Plots a) and c) present results for small (0.1) initial step size, and plots b) and d) present

results for large (0.9) initial step size. Other settings: gradient estimation accuracy ε = 0.05, cmin = 0.01,

cmax = 1, history window in which c+
2 was calculated was set to 20. Results are presented for 5,000

subsequent gradient estimation attempts performed at points randomly selected from the neighbourhood

of x?.

Step 2: If ci < cmin, return the estimate as calculated in Step 1 and report estimation

inaccuracy. Otherwise set ci := 1
2
ci and go to Step 1.

The shapes of feasibility constraints have been already presented in Section 2.1. As regards the

application of a gradient routine, optimum proximity (defined by < x?
1 − 1, x?

1 + 1 > × · · · ×

< x?
9 − 1, x?

9 + 1 >) was sampled with 38,000 gradient estimations. No simulation failures were

detected, but the gradient estimation results were unsatisfactory. Fig. 4.2 presents values of

gradient estimate in the direction of x2 and the corresponding graph of the average step size

c+
2 , for two initial values of c+

2 the estimation was started with. The comment can be made

on c+
2 that it always oscillates around its initial value. It means that there is no step size

(at least in the considered range) that guarantees an estimate better than others. On the

contrary, from what Fig. 4.2a and Fig. 4.2b present, bigger step size guarantees less varying

estimates. This can mean that the gradient estimation procedure applied was inadequate to

96 4. Solution of power plant set-point optimisation problem

minimum and maximum step sizes for gradient estimation

cmin = 10−3 cmin = 10−5

cmax = 10−2 cmax = 1 cmax = 10−2 cmax = 1

ac
cu

ra
cy

of
lin

e
se

ar
ch 10

−
2

ac
cu

ra
cy

of
ĝ

(·
)

10
−

1
2.392

4

1.649

4

4.104

4

2.091

5
10

−
3

3.221

3

4.176

3

1.757

3

5.652

4

10
−

4

ac
cu

ra
cy

of
ĝ

(·
)

10
−

1

1.647

32

1.647

2

1.647

2

1.647

90

10
−

3

1.647

125

1.647

28

1.647

6

1.647

3

Table 4.5: Test problem solving using a steepest descent gradient search routine with limited line search

step size. Table entries denote performance index value (bold) and number of algorithm steps (small

italics) found by routine run for various parameter values: step size limits and accuracies for gradient

estimation routine, and the overall accuracy for line search (in terms of absolute f(·) improvement). The

value of f(·) at the start point was 1.647.

this problem. However, all the above observations do not have much common with the most

fundamental obstacle: please note that the gradient sign changes occasionally — and this is

the real hindrance for applying a gradient routine.8 Those positive gradient estimates denote,

in fact, failed gradient estimations, i.e. those for which no c2 could guarantee the desired

estimation accuracy.

Despite the above discouraging results a simple gradient routine was tested in the solution

neighbourhood. It was just a steepest descent scheme with limited step size and golden section

line search procedure.9 It was started several times, with varying parameters, producing

results that are collected in Table 4.5. It failed to improve the initial result in two ways —

either terminating prematurely (cf. table entries with the number of steps less than 10), or

oscillating around the starting point, making no improvement. Actually, in several cases the

8There are reasons to suspect that those few gradient estimates reverting the search direction are, in fact,

results of simulation noise, and not the result of the real performance index shape.

9The golden line search procedure had to be also made immune to simulation failures. This feature turned

out to be never used, though, and it will not be presented here.

4.1. Optimisation tests and algorithms modifications 97

optimisation result was worse than the initial solution, due to the forced minimal step size in

line search routine. Generally, no rule was found that could determine behaviour of the tested

algorithm. It cannot be excluded that further experimentations, especially increasing the step

size, could help the presented situation. However, it would mean making the local procedure

not so local, which would oppose the initial motivation. Possibly the best solution would be to

resort to response surface methodology (cf. Section A.2) — but this is not always working (cf.

performance index graphs in Section 5.1 and imagine results of e.g. polynomial approximation

in that case), and finally was not tested. Negative results of gradient estimation and golden

line searches made the use of GRG out of consideration.

COMPLEX involvement and adaptation to the problem; results

It is evident that none of the presented algorithms in its original shape is in position to

solve the problem alone. Moreover, the nature of the performance index effectively prevents

application of a gradient optimisation routine because no gradient can be safely estimated.

Therefore, COMPLEX routine (cf. p. 74) was employed. COMPLEX is not so explorative

as CRS or EA, maintains considerably smaller pool of points, and has built-in support for

explicit and implicit box constraints — those features fit the routine perfectly to our problem

where gradients are not computable.

Before COMPLEX has been applied to the test problem, it was equipped with the same

termination criteria as CRS (see p. 87). Similarly, simulation failure during augmentation

operation can result in assuming infinitely bad quality of the trial point, or in trial point

rejection. (As regards COMPLEX Step 2, where the reflection is made, a simulation failure

is considered equal to implicit constraints violation.) It had been only after COMPLEX

routine was run with the test problem, that the discovery of nonconvex domain was made.

In details, COMPLEX reported simulation failure when x̃ was approaching complex centre

(please note that performance index is never evaluated for complex centre by the original

COMPLEX routine). Since f(·) was computable at all other pool points, it had to mean

domain non-convexity. A series of sections through the domain have been made as presented

in Section 2.1. They confirm that the domain is slashed and spotted with various regions

where the IHE simulator simply fails.

Since the guidelines of research were to solve the problem without modifications made to the

simulator, workarounds had to be made in COMPLEX routine with purpose to make it robust.

Infeasibility of complex centre can be overcome by extra augmentations, as it was proposed

in [41]. However, in practice this has turned out to be insufficient: gradual approaching an

infeasible complex centre does not guarantee that any feasible point will be encountered on

98 4. Solution of power plant set-point optimisation problem

the way. Tests have shown that extra augmentations do not make the augmented complex

centre feasible, and the the routine gets stuck exactly where the centre infeasibility happens.

To overcome this difficulty, we propose another improvement, inspired by the way original

COMPLEX works, i.e. by shifting a trial point x̃ to the complex centre. The innovation is

that it will be the reflection centre c̃ (initially, equal the complex centre c) that will be shifted

in the direction of the best point in the complex. Such shift will create a new c̃ := 1
2
(c̃ + xl),

where xl is the best complex vertice. After the modifications, COMPLEX routine incorporates

both extra augmentation and centre shift operations. Each time a centre c is calculated by

the original routine, the feasibility check for c is made. Should the test fail in augmentation

operation, c is called c̃, and c̃ is gradually shifted until feasibility is regained. Such shifting

is executed also if the backtracking after reflection does not bring any solution better than

xh. In all the above cases c̃ finally gets so close to the best point that its feasibility and x̃

quality are guaranteed. The only drawback of this workaround can be premature algorithm

convergence. However, it is the price one has to pay for robustness. After all, one may start

COMPLEX over several times in hope for good luck in complex creation phase.

Table 4.6 presents a comparison of ordinary and improved COMPLEX routines perfor-

mance. Both routines were started thirty times for each combination of εI and w values, from

the first feasible solution obtained in preceding experiments by CRS (i.e. quite far from the

optimum).10 The conclusion can be made that the improved routine version is, on average,

more effective: with the same termination criteria, it finds solutions up to 10% better than its

classic counterpart. The costs of such efficacy improvement are rather high (cf. the number

of performance index evaluations). However, they stay an order of magnitude less than in the

case of CRS (Table 4.1) and EA (Table 4.4) when solutions of similar quality are considered.

To verify the modified COMPLEX algorithm ability to carry out optimisation as well as to

check the influence of other COMPLEX settings, the routine was run a number of times from

the same starting point x0 as in previous COMPLEX tests. The performance index at x0 is

2.216. COMPLEX algorithm behaviour against change of two selected parameters is presented

in Table 4.7. As far as mean solution quality is considered, the best is to set small pool size,
¯̄X = 2(dim x + 1). Larger pools tend to have adverse impact on solution quality, but it is not

strong. Such result cannot be a coincidence as it appears for almost all εA considered. One

of possible explanations could be that small pool gives the starting point more importance,

and since the starting point is already the result of some optimisation, it prevails over those

remaining pool points that are selected at random. This reasoning, however, is not based on

10The only amendment made to the original COMPLEX routine was that a number of retries was performed

in complex creation phase if complex centre infeasibility was detected.

4.1. Optimisation tests and algorithms modifications 99

εI\w 100 50 20

10−5

1.662

1.739

3973

1768

1.658

1.738

3300

1493

1.708

1.807

923

1002

10−3

1.668

1.736

2339

1240

1.675

1.750

1354

1269

1.737

1.832

647

650

10−1

1.759

1.862

483

608

1.786

2.037

319

286

1.897

2.111

190

180

Table 4.6: Table entries present the average performance index values (large font) and number of f(·)

evaluations (small font) for test problem optimisation by COMPLEX routines. Bold numbers refer to

COMPLEX version with improvements by the author; the standard numbers refer to original COMPLEX

version. Test were performed for varying accuracy εI and history window w used in termination criterion

(cf. p. 87), and for f(x0) = 2.216.

100 4. Solution of power plant set-point optimisation problem

εA\ ¯̄X 16(dim x + 1) 8(dim x + 1) 4(dim x + 1) 2(dim x + 1)

10−6

1.855

1.683

4721

1.829

1.663

3158

1.813

1.646

3484

1.810

1.646

2740

10−5

1.879

1.658

4404

1.874

1.694

3130

1.871

1.665

3015

1.845

1.647

2059

10−4

1.868

1.677

3419

1.826

1.666

3553

1.842

1.647

3405

1.816

1.646

2130

10−3

1.853

1.689

5321

1.862

1.678

2789

1.855

1.673

1911

1.809

1.647

2306

10−2

1.866

1.670

2623

1.917

1.668

2117

1.823

1.684

1533

1.858

1.647

1518

10−1

1.951

1.703

1905

1.947

1.671

1885

1.994

1.666

1569

1.966

1.651

1787

Table 4.7: Results of test problem optimisation with COMPLEX algorithm run from a point far from x?,

for varying complex size ¯̄X and varying value of εA. The average value of f(·) (bold) for COMPLEX

solutions, the best value (normal) of f(·) and the average number of f(·) evaluations (italics) are given

for each combination of εA and ¯̄X.

4.1. Optimisation tests and algorithms modifications 101

strong foundations. As regards the termination criterion, selecting εA = 10−6 or εA = 10−3

does not have any apparent influence on the quality of result. It turns out that this termination

criterion serves only the detection that COMPLEX, in the course of gradual contractions, has

collapsed completely, and no further progress can be made altogether. Like in case of EA,

selection of this termination criteria does not appear to be a fortunate one. Possibly further

improvements of COMPLEX could be needed, were it not for the best results obtained in

a series of optimisation runs (20 repeated optimisations) carried out for each Table 4.7 cell.

They turn out to be virtually equally good for wide choice of εA and ¯̄X. Such results confirm

the general reputation of COMPLEX as an algorithm requiring to be given multiple ‘chances’

(i.e. restarts).

The number of simulation invocations needed is, for most Table 4.7 entries, dependent on

complex size, as if extra complex vertices were only a needless burden that has to be dragged

and that utilises computing resources. Therefore, the original suggestion to stay with small

complex size [20], and to devote extra computation budget for COMPLEX restarts, is in force.

Nevertheless, the most valuable and general conclusion is that COMPLEX is in position to

approach the optimum starting from as far as just some remote point where (1.4) is satisfied.

Hybrid algorithms construction and testing

From the results presented so far, one may come to the conclusion that none of the considered

routines can perform the optimisation task alone as long as the computation budget is limited.

The necessity of switching from global to a local routine is evident — and cited in numerous

optimisation problem descriptions. The ‘only’ question remains, when such switching should

take place. The main criterion of switching from global to local optimisation routine that is

proposed for the test case is the maximum number of performance index evaluations done by

the preliminary routine. As regards the termination criterion for the latter routine, which is

COMPLEX, εI = 10−5 has been selected with the history window w = 50. Both settings result

from Table 4.6 data analysis; such setting for εI still brings improvement in quality of found

solutions and is hopefully still larger than simulation noise amplitude (cf. Fig. 2.7). Setting

w to the value of 50 has been considered a good compromise between improved quality (cf.

results for w = 20) and degraded efficiency (w = 100). Including εA as additional termination

criterion has been discarded as being irrelevant (cf. Table 4.7). The maximum number kS of

performance index evaluations has been set to 10,000, the limit within which good optimisation

results can easily be obtained (cf. Table 4.6 and Table 4.7).

Selection of such switching scheme favouring rather early switching (there is no compre-

hension for lengthy global explorations) is possible only after many tests have been done that

102 4. Solution of power plant set-point optimisation problem

gave the feeling for the nature of f(·). Particularly, f(·) is suspected to be unimodal, and the

only real obstacle are regions where the simulation fails, i.e. the active feasibility constraints.

Two hybrid algorithms have been created and tested with COMPLEX run in their final

optimisation stage; CRS is the preliminary optimisation routine in one of them, EA is the

preliminary optimisation routine in the other. Both CRS and EA operate under uniform

termination criterion: w is set to 200 and εI to 10−5, but both the settings, especially εI, are

rather arbitrary ones, aiming to detect the situation that no progress is made — the point

is only how long (w) one can wait for any progress to appear. CRS operates with pool of

8 dim x = 72 points, and it assumes f(x̃) = ∞ for those x̃’s where the simulation fails. Such

settings are a kind of trade-off between the results from Table 4.2, current knowledge of the

problem and suggestions in [91] for the pool size to be at least 10 dim x. EA operates with

probability p that a centrally located x will, after mutation, still be within Dx set to 0.95,

and with the handling of simulation failures like in CRS. The value of 0.95 for p is not exactly

the one giving best performance when EA is to be applied throughout the whole problem;

nevertheless it was set so for two-phase algorithm to make it more explorable.

The tests were performed with varying maximum number kS of f(·) evaluations for pre-

liminary routines. The routines were initially stopped just immediately after the first feasible

solution was found and, in next test configurations, after 500, 1000, 2000, 4000, 8000 or 16000

evaluations of f(·) (or earlier, if progress less than εI was detected). Next, COMPLEX took

over. For each configuration 100 algorithm runs were made; their results are presented in

Fig. 4.3. Let us discuss preliminary routines results first. Average quality of CRS solutions,

presented in graphs a) and b), improves almost imperceptibly as the budget grows, while

EA solutions improve steadily and noticeably. A question may be asked for the reason of

evident CRS decline for big computation budget. First, consider the percentage of algorithm

runs that exhausted kS for subsequent testing configurations: it is {100, 71, 52, 46, 39, 24, 9}

for CRS and {100, 63, 54, 28, 7, 5, 0} for EA. Therefore, for kS ≥ 2000 EA execution is limited

even less frequently by computation budget than CRS is — and EA is still able to find better

solutions. A look at e) and f) graphs may bring the answer: CRS running times (in terms

of number of f(·) evaluations) vary wildly but they are, on average, shorter than those for

EA. Simply, for increasing computation budget, CRS is less and less reliable to find better

and better solution in every single run — unlike EA. CRS success (cf. Table 4.1) has the

price of tight termination criterion plus abundant computing budget; CRS applied for rough

optimisation performs worse than EA does.

Coming to COMPLEX results, a striking observation can be made that the quality of CRS

or EA solutions (subsequently taken over by COMPLEX as its starting points) affects only

4.1. Optimisation tests and algorithms modifications 103

a)

1st feasible 500 1000 2000 4000 8000 16000

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

f
CRS−>COMPLEX

b)

1st feasible 500 1000 2000 4000 8000 16000

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

f

EA−>COMPLEX

c)

1st feasible 500 1000 2000 4000 8000 16000

1.65

1.655

1.66

f d)

1st feasible 500 1000 2000 4000 8000 16000

1.65

1.655

1.66

f

e)

1st feasible 500 1000 2000 4000 8000 16000
0

2000

4000

6000

8000

10000

12000

f(

)
ev

al
ua

tio
ns

f)

1st feasible 500 1000 2000 4000 8000 16000
0

2000

4000

6000

8000

10000

12000

f(

)
ev

al
ua

tio
ns

g)

1st feasible 500 1000 2000 4000 8000 16000
0

1

2
x 10

−4

ef
fic

ie
nc

y h)

1st feasible 500 1000 2000 4000 8000 16000
0

1

2
x 10

−4

ef
fic

ie
nc

y

Figure 4.3: Performance index value, number of performance index evaluations and optimisation efficiency

for different preliminary optimisation routines and various changeover criteria. ab) Average f(·) values

(white bars) when the switch to COMPLEX was made; average f(·) values (gray bars) at the optimum

found by COMPLEX; f(·) at best solution (black bars) found in the series of runs. cd) Close-up of the

above bar graphs of final f(·) values. ef) Average number of f(·) evaluations done by COMPLEX routine

(gray bars) and by the whole hybrid (white bars). gh) Average efficiency of the whole hybrid algorithm.

Peaks on bar edges indicate standard deviations from the average values.

104 4. Solution of power plant set-point optimisation problem

slightly the final solution quality. Compare graph a) with c) and b) with d) — and observe that

correlation of white and gray bar heights can be assumed safely only in ‘1st feasible’ case and,

to some extent, for b) and d) graphs with kS ≤ 4000. It is evident that running either CRS or

EA longer than necessary to find the first feasible solution, is pointless. This observation may

mean that COMPLEX, if granted computation budget big enough, is in position to crack the

problem starting from any feasible point. (This hypothesis is supported by graph d) and f)

— better starting points reduce significantly the running time, not the final solution quality.)

Let us discuss the results with the efficiency as the main performance criterion. A rea-

sonable efficiency definition in our case can be the ratio of decrease of performance index at

the solution w.r.t. the first feasible point found, and the total number of evaluations of f(·).

The graphs of efficiency defined this way are shown in Fig. 4.3gh. The evident conclusion is

that switching to COMPLEX should be performed as early as possible, i.e. on finding first

feasible solution. The effort spent on finding good COMPLEX starting point is useless, which

is clearly seen on graph h).

When the best results (indicated by black and most embedded bars) obtained in a series

of 100 algorithm repetitions are concerned, their quality — as compared to an average COM-

PLEX solution — makes them worth finding. Unfortunately, they are hit by COMPLEX only

occasionally and, sadly to say, this can mean that the best approach could be to start COM-

PLEX a multitude of times from any feasible point. However, with the average of 2500 f(·)

evaluations in a single COMPLEX run, such approach could be acceptable only in powerful

parallel computing environment — which is not our case.

4.2 Final hybrid approach verification for the plant prob-

lem

Before getting to the target problem of full-size power plant model set-point optimisation, it

is desirable to make intermediate conclusions. It comes from results of hybrid algorithm tests

that, in fact, COMPLEX should be started as soon as a feasible solution is available from

the preceding routine. No further CRS or EA operation is justified because of their inferior

efficiency. At least such conclusions apply to our concrete problem where, as it turns out,

hitting at random a point from which COMPLEX converges to x? is quite easy. One should,

however, not forget that box constraints on decision variables in the test problem were adjusted

so that infeasible region size was not overwhelming. Otherwise, using a preliminary routine

is a must. Also, disappointingly straight rule to switch at first feasible point may be in force

for this particular problem only, where non-existence of local optima is suspected. The above

4.2. Final hybrid approach verification for the plant problem 105

and all other potential criticism that can be made about the proposed approach must yield to

the fundamental conclusion that the problem is solvable and the solution is satisfactory.

The main observation made so far on the switching criteria, the ‘early switching imper-

ative’, can still serve as starting point for more research. The target full-size optimisation

problem may serve not only to verify efficacy of the two hybrid routines, but also as an op-

portunity to propose and verify more algorithm amendments. Those amendments take two

directions. One is to try switching criterion other than just the number of f(·) evaluations.

The other is to make switching more effective in general, by passing as much useful informa-

tion to COMPLEX routine as possible. The alternative switching criterion that was tested

and whose application is described below bases on the current absolute progress (in terms of

performance index improvement), i.e. the progress made within some history window. It is

therefore much like εI termination condition. In detail, the changeover to COMPLEX is made

only after the current efficiency ηn has decreased below some ηmin. The current efficiency is

calculated at, say, n-th evaluation of f(·) done by an algorithm as the ratio: ηn = fn−l−fn

l
,

where l is a time window, and fn, fn−l are the currently best known approximations of x?

known at n-th and n − l-th evaluation of f(·), respectively. The current efficiency is calcu-

lated each time f(·) evaluation is invoked. Simultaneously, a pool of at most m best feasible

solutions as found by an algorithm, is maintained. On ηn < ηmin the current algorithm (either

CRS or COMPLEX) is terminated, and COMPLEX is initialised with all stored best solu-

tions as the complex vertices. Thus, the two kinds of amendments have combined into a new

switching strategy. Given general conclusions from the former section, this strategy would

be senseless without the improved COMPLEX initialisation. However, passing all the best

information from preliminary to final routine may boost the latter so that the whole tandem

could outperform the ‘early switching’ option.

Such switching method has been tested for the target optimisation problem. Routines

settings had to be adjusted slightly in order to reflect increased dimensionality. The history

window w was set uniformly for all routines to the value of 210, i.e. exactly to 10 dim x.

This was a slight change in case of CRS and EA; in case of COMPLEX this adjustment was

mitigated somewhat by setting εI = 10−4 (for the test case εI was set to 10−5). Moreover, EA

population size was adjusted to 120 individuals, a value that does not follow the dimensionality

growth (such change complies with a known hint not to make the population too large). Let

it be reminded that, after what has been experienced about the behaviour of the considered

routines, such settings are to detect situations when no further progress will be made (rather

than logging a real optimisation progress slow-down). They are only auxiliary here.

During tests, preliminary routines (CRS, EA) were run 60 times with no initial solution

106 4. Solution of power plant set-point optimisation problem

a)

1st 1e3 1e1 1 1e−1 1e−3 1e−4 1e−5 1e−6 full
2.6

2.7

2.8

2.9

3

3.1

3.2

100
2

56 66 18

25
65 15 3

8

f

CRS−>COMPLEX

b)

1st 1e3 1e1 1 1e−1 1e−3 1e−4 1e−5 1e−6 full
2.6

2.7

2.8

2.9

3

3.1

3.2

100

2
42 80 20 24 78 19

5 100f

EA−>COMPLEX

c)

1st 1e3 1e1 1 1e−1 1e−3 1e−4 1e−5 1e−6 full
0

2000

4000

6000

8000

10000

12000

14000

f(

)
ev

al
ua

tio
ns

d)

1st 1e3 1e1 1 1e−1 1e−3 1e−4 1e−5 1e−6 full
0

2000

4000

6000

8000

10000

12000

f(

)
ev

al
ua

tio
ns

Figure 4.4: Performance index f(·) and number of f(·) evaluations for different preliminary routines and

for varying switching criteria. ab) Average f(·) values (white bars) when the switch to COMPLEX was

made, average values (gray bars) of the optima found by COMPLEX; f(·) at the best solution (black

bars) found in a series of runs. cd) Average number of f(·) evaluations done by COMPLEX (gray bars)

and by the whole hybrid (white bars). Numbers on top of bars in ab) graphs denote the percentage of

all trial runs for which that switching criterion was reached. Labels ‘1st’ and ‘full’ stand for ‘1st feasible’

resp. ‘m feasible points collected’ criteria.

given. At selected milestones COMPLEX was called to finish up the optimisation task. Those

milestones were: first feasible solution found, ηmin = 103, . . . , 10−6 and, independently, the

moment when the pool contained, for the first time, exactly m solutions. The efficiency calcu-

lation procedure settings were m = 2 dim x (i.e. exactly as many as there are in COMPLEX

pool) and l = 10 dim x. The results are presented in Fig. 4.4. Sadly enough, all the inno-

vations in this test series — changed switch criterion, COMPLEX supplied with extra pool

points, new optimisation problem — did not bring any breakthrough; the graphs look flat and

indifferent to the switching criterion. Closer examination of optimisation log files showed that

only in a small fraction (about 10%) of trials the optimisation process reached the milestones

harmoniously, i.e. with steady progress of gradually decreasing rate. In most cases new solu-

tions rapidly ceased to be discovered, and the routine efficiency plunged to zero. All this is

reflected by percentages of runs in which a particular milestone was reached, that are given

4.2. Final hybrid approach verification for the plant problem 107

at bar tops in Fig. 4.4ab. Particularly on graph b) those percentages rise periodically, thus

marking the path most optimisation trials followed. (Results for ηmin = 102 and ηmin = 10−2

are not shown due to lack of data.) Similarly inconstructive are statistics of the average f(·)

evaluation number given in Fig. 4.4cd; the only conclusion is that lion’s share of computation

budget is consumed by COMPLEX, and that consumption can vary wildly.

Let us present the best solution found by COMPLEX routine. It is (cf. Fig. 2.2)

x =

��
�

0.014

2

2

2

1.9

0.035

19.8

9.91

11.6

22.3

0.025

16.3

4.38

0.005

0.005

38.3

16.3

15.3

16.2

15.1

14.5

� ���

0.014

0

5

x1

2

0

2

x2

2

0

2

x3

2

0

2

x4

1.9

0

2

x5

0.035

0

1

x6

19.8

19.8

24.2

x7

9.91

9.9

12.1

x8

11.6

9.9

12.1

x9

22.3

21.15

25.85

x10

0.025

0

1

x11

16.3

16.2

19.8

x12

4.38

0

10

x13

0.005

0

4

x14

0.005

0

4

x15

38.3

31.5

38.5

x16

16.3

16.2

19.8

x17

15.3

15.3

18.7

x18

16.2

16.2

19.8

x19

15.1

13.77

16.83

x20

14.5

13.77

16.83

x21

(4.2)

and the value of f(·) there is 2.623. The values of flows are presented in (4.2) also on rulers,

analogously to (4.1). The main evaluation criteria for solution reasonability are flow distribu-

tions for boilers and turbines, and also values of controllable flows through reduction valves.

Boilers 1–3 receive almost as little water as possible in order to maximally reduce utilisation

of that part of installation (i.e. boilers and turbogenerators 1–3) as being less efficient. This

is compensated by the maximal load put on Boiler 5 (x16), the best one. As regards steam

distribution across turbines, a strange situation can be observed that the flow x9 powering less

efficient TG3 is not reduced to its lower bound in order to direct more steam to more efficient

TG1. The reason for this is probably the fact that TG1 output is connected to the rest of

system in other way than TG2 and TG3, and may be subject to additional restrictions (im-

plicit constraints). Instead, the way TG4 and TG5 are powered remains correlated with their

108 4. Solution of power plant set-point optimisation problem

efficiencies. Note that steam that reaches the last turbine 5 stage (x20 + x21) is substantially

bigger that the steam flow x10 through the less economic turbine 4. In the opinion of IHE

staff, a very strong point of the obtained solution is that flows through the reduction valves

are kept virtually at zero level (cf. values x1, x6, x11 and x15). This means all steam is utilised

for electricity generation before it reaches industrial steam outlets.

Relaxation of the plant problem constraints could possibly allow to get still better so-

lutions. However, for the presented problem no initial solution was known, and many of

constraints were set for 90% and 110% of the nominal working parameter values — just to

have some problem formulation to start with. Possibly it would be wise to consider explicit

constraints redefinition as soon as a feasible solution is found. However, a remarkable fact

has been observed that for very ‘loose’ initial constraints, the search domain consists in gross

part of regions where feasibility constraints are violated. This fact really justifies the use of

a preliminary global algorithm of any kind instead of running COMPLEX alone.

4.3 Interface adaptation

The choice of programming environment and techniques for implementation of optimisation

algorithm and for interfacing simulation has the same goals as the choice and adaptation

of component optimisation routines. The first goal is to ensure stable optimisation process

immune to simulator crashes; the second is to provide means to increase computing efficiency.

The safest way to attain required stability is to keep simulation and optimisation routines as

separate processes. (It could be also possible in most programming languages to assemble all

modules into one executable; to detect the signals emitted on simulation crash, and then to

intercept them — but no recipe can be given what to do next; in particular, how to reset such

damaged simulator.) Therefore, after the simulator crash, the role of optimisation module

is to clean the environment from all remains of that faulty simulation: hanging processes,

semi-completed simulation output files etc. — and to restart the simulation module.

Unfortunately, such modules separation must result in degraded performance because sim-

ulation input and output data must cross process boundary, which requires some sort of

inter-process communication to be used. Having accepted that such inter-process communi-

cation must happen anyhow, it is wise to choose such communication mechanism that allows

for parallelisation and distribution of computations with small overhead.

In case of IHE modelling tool Java was chosen for implementation of optimisation module.

Such choice might appear controversial, but Java is indeed apt to execute optimisation routines

in cases like ours. This is because the load caused by operation of optimisation routine itself is

4.4. Conclusions on proposed solving approach applicability and efficacy 109

far less than that of simulation routine — even if the optimisation routine code is interpreted.

At the same time, Java has many advantages: prototyping is less error-prone, the program

can be run independently of the platform, the Java class code can be just-in-time compiled

before being run. But probably the biggest advantage of Java here, is its native support

for parallel processing by Java threads, and the support for distributed computations with

Remote Method Invocation (RMI) technology.

Some trade-off was needed as regards the degree of simulation and optimisation modules

integration. On one hand, complete embedding the simulator into Java was possible thanks

to Java Native Interface (JNI) and availability of simulator source code in Fortran. Such

solution was, however, excluded (as mentioned above) for the sake of stability. On the other

hand, it was possible to leave the simulator executable without any change — but this would

result in degraded performance and impossibility of running optimisation in parallel because

of simulator input and output accomplished through a set of files. It was then decided that the

simulator interface was to be partially adapted — only to extent that no disk files were to be

involved in transferring simulation input and output. Relatively small changes to simulation

code were introduced that made the simulator read its input from the standard input (resp.

write its output to the standard output), instead of using files. This sped up the simulation

and, what is more important, allowed several simulation module instances to be run in the

same directory e.g. in case of parallel optimisation on a multiprocessor machine.

Power systems optimisation parallelisation was eventually not practised, but appropriate

Java classes and interfaces have been prepared that would make computations distribution

easy. Preparing parallel versions of some of presented optimisation routines is similarly easy

as well from conceptual (cf. Section 5.1 and Section B.1) as from technical (Java threads and

monitors) point of view.

4.4 Conclusions on proposed solving approach applica-

bility and efficacy

It will be shown that the way the plant set-point optimisation problem was approached fully

conforms to Thesis 2, further specified on p. 82 as the proposed model approach to simulation-

optimisation problems. The proposed approach steps relate to the procedure followed and

presented in this chapter as follows.

Ad 1. It has been postulated that the selection of hybrid algorithm component routines is

determined by any a priori problem knowledge, by routines simplicity that allows for eventual

modifications, by routines ability to support the problem specifics in any stage of optimisa-

110 4. Solution of power plant set-point optimisation problem

tion, and by routines and computing environment adaptability for concurrent execution. The

a priori knowledge is the awareness of high model nonlinearity plus experience in techniques

used by commercial (or, at least, similar) optimisation systems. To ensure possibility of mod-

ifications, the chosen optimisation routines are either simple or available in their source code.

Their support for wide classes of problems minimises the risk that they will be unfit for the

considered problem. Each of the selected routines can be subject to coarse-grain, however

unrefined, parallelisation. Also, the selected environment is well suited for parallel and dis-

tributed computing — this coming at negligible cost (i.e., slow execution of an optimisation

routine). All things considered, CRS and — originally — GRG have been chosen to be run

in Java.

Ad 2. It has been postulated to make a simpler, and therefore not so computationally

demanding, model — and to use it throughout the procedure in place of the original one.

This recommendation has been followed by introduction, in Section 2.1, of nine-dimensional

test model, which was subsequently demonstrated to exhibit all the features of the original

model: all sorts of constraints, simulation ‘noise’, sudden steps on f(·) surface.

Ad 3. Appropriate measures have been taken to ensure mutual insulation of simulation and

optimisation modules. Simulation interface definition has been defined so that the optimisation

routine could be left unaware of eventual simulation failures. Moreover, easiness of RMI

mechanism application keeps software portability to distributed version low-cost.

Ad 4. The primal requirement to carry out optimisation in order to achieve a good solution,

a reference point, has been achieved. In presence of simulation failures the optimisation is

possible by change made to CRS code so that those failures can be supported. On the other

hand, the mounting problems in gradient estimation forced to replace GRG with COMPLEX.

Consequently and similarly to CRS, COMPLEX was subject to modifications in order to make

it immune to simulation failures and domain non-convexity. Given CRS inefficiency, EA has

been considered as alternative preliminary routine. All these activities follow recommendations

given in Point 4.

Ad 5. As suggested, series of optimisation tests have been performed with hybrid algorithms

set for various switching criteria. The highest efficiency was obtained when the switching was

performed as soon as a suitable COMPLEX starting point was available. The hybrid methods

proved to be robust but — due to COMPLEX nature — there are advised to be run in several

repetitions as it improves the chance to find a really good solution.

Ad 6. By following the last suggestion and applying the hybrid to the original full-size prob-

lem, good optimisation results have been obtained in terms of f(x?) alone as well as in terms

4.4. Conclusions on proposed solving approach applicability and efficacy 111

of analysis of the solution nature (i.e. flows distributions and load of system components).

The above are the main conclusions. Also, as by-product, experience concerning switching

criteria and exact workings of considered routines has been collected. This experience will be

conveyed to two other problems whose solution descriptions follow in the next chapter.

Chapter 5

Solutions of waveguide design

and optimal pricing problems

This chapter presents procedures applied for solving the two other considered problems, the

waveguide design and network services pricing. They both were being approached under cir-

cumstances different than those for plant problem, with differences considering mostly modeller

availability or (as in waveguide design) or model variability (as in services pricing). Conse-

quently, the applied solving procedures do not follow closely the approach postulated on p. 82.

As compensation, the two cases offer an opportunity of insight into kinds of troubles one may

run into that are different from simulator fallibility — but that are equally important.

5.1 Waveguide dimensions optimisation

The problem of waveguide dimension optimisation was being approached by the author in

different circumstances than the power system models. The grounds of microwave models

optimisation were covered in IR quite profoundly — numerous publications had been already

issued from there [49, 25], reporting the actual methodology with QuickWave as a tool, as well

as successful optimisation attempts for circuits modelled otherwise than with QW-Simulator.

In one of them [8] the problem of a microwave transformer design was presented, which was

solved by combined application of EA and a local search procedure with search direction being

derived from QP.

The hopes and positive attitude in IR towards direct search methods mingled with anxiety

about their well-known computational burden: solving a moderate-dimension optimisation

problem with a model calculated numerically could easily last days. General-purpose evo-

lutionary algorithms, so frequently applied to various design problems and famous for their

5.1. Waveguide dimensions optimisation 113

efficacy, were particularly unwelcome in our problem. Let us remind here that the simulation

times for power system models were in the order of one second while an average QW-Simulator

run takes minutes. Therefore, the question was what routine to take for preliminary optimi-

sation.

In the alternative, widely known and competitive to QW-3D, approach [13], constructed

simulators are highly specialised to handle a narrow class of designed shapes. Properties of

performance index computed this way let the authors successfully utilise gradient methods to

find the optimal design. It appears that the crucial point of this approach is a mapping of

some kind between the decision variables for a coarse model and the decision variables of the

‘true’, fine model. Such mapping allows to perform coarse-model optimisation, with occasional

referring to fine-model simulation results.

Algorithm selection

CRS2 has been qualified as the preliminary optimisation routine. Such decision has been made

jointly with IR as the result of rather positive impression CRS has left after the power models

case; it has been also driven by some disbelief that the application of EA in this particular case

would pay off. This decision is definitely subjective since the merits of EA are unquestionable:

it is as simple in implementation and robust as CRS is, and so far it has proven to be even more

effective than CRS. The only EA feature that could be perceived as drawback is that some

algorithm termination criteria process all individuals in the current generation and therefore

termination criterion evaluation can be invoked much less frequently than for CRS.

The possibility of running the optimisation in parallel is an issue as important as robustness

and efficacy. The overall circuit design process cannot exceed several days, and this condition

might easily be not fulfilled considered performance properties of so far used Powell routine,

and the fact that Powell is available only in sequential version. Instead, CRS parallelisation

is easy, also from technical point of view, especially that the unit being at disposition is

a multiprocessor PC, and not a distributed heterogenous network.

Algorithms adaptations and 2-D optimisation tests

CRS routine does not require any special arrangements to be applied to our problem. Unlike

for power system modeller, QW-Simulator does not fail in the way that could affect stability

of optimisation module execution. ‘Failures’ of QW-Simulator mean rather enormous errors

that could appear in effect of improper settings — like mesh point locations, excitation wave

parameters, or simulation time — but none of them is available to optimisation routine as

114 5. Solutions of waveguide design and optimal pricing problems

the decision variable.1 The effort of adaptation consists mainly in developing a CRS parallel

version. The way CRS has been parallelised differs from what is proposed by its author in

[92]. The concurrent CRS algorithm described there was designed to be run asynchronously in

a specific transputer architecture, and consisted of a pool management process and k processors

executing CRS core operations (simplex creation, feasibility tests, function evaluation). CRS

processors constantly executed the core operations and communicated x̃’s better than xh to

the pool manager. On the other hand, the pool manager collected those new pool points,

compared them with the current pool contents, and broadcasted any changes of the pool to

CRS processors.

Such implementation was highly asynchronous. In our case CRS is to run on a single mul-

tiprocessor PC, and therefore different parallelisation scheme has been proposed that assumes

closer dependence of CRS processes. Point pool, instead of being managed by a dedicated

process, is made a shared resource with access reserved for one CRS process at a time. A CRS

process task executes without modifications with the exception that points being actually re-

flected by other CRS processes cannot be used for simplex creation (Step 2). Such a parallel

CRS version is simpler to implement and introduces no inter-process communication delays.

Yet other two changes have been made at some point in CRS application to waveguide

design process, in pursue of quicker convergence. First, it was verified empirically that re-

flecting xh instead of some randomly chosen x̃dim x+1 really improved CRS performance. With

this rule incorporated into the algorithm, xh is inevitably used for reflection — and becomes

blocked for other CRS processes. Consequently, other CRS processes use the second, third,

and so on, worst points for reflection. Such coordinated modifications really help to get rid of

worst simplex vertices quickly. The second change concerned handling of x̃ violating explicit

constraints (Step 4). Instead of rejecting them (as was done originally), they are ‘bounced’

at constraints back into Dx

x̃i :=

���� ��� 2xL,i − x̃i if x̃i < xL,i

2xU,i − x̃i if x̃i > xU,i

x̃i else

. (5.1)

A series of optimisation runs in different configurations have been made to find out whether

CRS was really capable of replacing Powell method altogether in waveguide design problem.

Two of exemplary ‘optimisation paths’, i.e. plots of trial points generated by Powell2 and CRS

1Stability of the simulation-optimisation software as a whole does not free the optimisation routine designer

from being cautious since huge undetected simulation errors may pass unnoticed and may do more harm to

the optimisation process than evident simulation crashes.

2Although Powell routine generates subsequent solutions using performance function (2.5) for a finite p,

5.1. Waveguide dimensions optimisation 115

a)

b)

Figure 5.1: Trial points (white circles) generated in exemplary runs of a) Powell routine and b) CRS

routine. The problem solution location is indicated with a triangle.

116 5. Solutions of waveguide design and optimal pricing problems

methods are presented in Fig. 5.1. The path of Powell method presented there is a specimen

in the sense that it actually presents much more than Powell method experiences in its average

run. One can distinctly see the first two line searches performed in versor directions, followed

by searches in directions considered by the method to be conjugate. However, frequent back-

tracks denoted by many overlapping circles indicate that the quadratic approximation of f(·)

definitely does not hold. This Powell path is eventually a successful one, but in general the

algorithm efficacy is very sensitive to the start point location and demands attentive super-

vision of an expert who is needed to apply restarts and to adjust p in (2.6). Instead, the

other graph presents an ordinary CRS path. It was experienced that using CRS one needs on

average 30% less budget for performance index evaluations than while using Powell routine,

to achieve a solution of comparable quality. Such ratio is a resultant of average number of f(·)

evaluations performed by each routine (much lesser in case of Powell) and the average efficacy

of a single optimisation run (much bigger for CRS). Forty optimisation runs of each routine

were performed to obtain those ratios, with the starting point being chosen at random in each

case.

Fig. 5.2 presents location of ‘good’ CRS solutions and the location of the best solution

found by Powell routine against the location of the problem solution x?. 38 out of 40 CRS

solutions have been classified as as good w.r.t. the value of the objective function; however

some of them lie in the attraction area of the local optimum. Great majority (circles tend to

cover one another) of CRS solutions are located very close to true problem solution,3 which is

inaccessible because of simulation errors forming a ‘canyon wall’, against which most solutions

lean. (This canyon wall could be reduced by setting appropriate simulation accuracy — but

this would cause a single optimisation run to last days.)

3-D optimisation by a hybrid routine

The results of two-dimensional waveguide optimisation example give CRS absolute primacy

over Powell routine. It can seem the cooperation of them both algorithms in any form of

a hybrid algorithm would be pointless. To verify this observation, a number of optimisation

trials has been performed in similar configuration for 3-D problem (i.e. with ims as the extra

decision variable x3). Powell and CRS were started from points randomly selected from the

domain. Out of 100 optimisation runs, the number of successful ones, i.e. with performance

its termination criteria use ‖ · ‖L∞
— i.e. as in CRS. This is another Powell routine improvement aimed to

prevent the premature convergence.

3The true problem solution was found by extensive scan of the most promising area (the one densely

populated in Fig. 5.2 with circles). The simulation settings used for the scan ensured very high accuracy.

5.1. Waveguide dimensions optimisation 117

22 22.2 22.4 22.6 22.8 23 23.2 23.4 23.6 23.8 24
4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

x
1

x 2

Figure 5.2: Location of solutions found by CRS (white circles), of the best solution found by Powell

routine (white square) and of the true solution (black triangle) for two-dimensional problem of waveguide

design.

118 5. Solutions of waveguide design and optimal pricing problems

index value reduced to below 0.012, was 8 for Powell and 49 for CRS routine. Simultaneously,

the average number of f(·) evaluations needed by the algorithms to reach a solution was 34

and 260, respectively. Let us introduce some measure of efficiency: let us call it the hypothetic

effort needed to be put in order to find a satisfactory solution with probability p:

N = n log1−r(1 − p) , (5.2)

where n is the average number of f(·) evaluations made by an algorithm and r is the ratio of

successful solutions obtained in a series of optimisation runs.4 Let us require the probability p

of obtaining a good solution to be 0.95 and let n denote the average number of f(·) evaluations

needed to find a solution. Then, for the experiment results given above, such hypothetic effort

would amount to 34 log0.92 0.05 ≈ 1222 and 260 log0.51 0.05 ≈ 1157 evaluations of f(·) for

Powell and CRS, respectively. It is plainly seen that CRS still wins over Powell, although the

fraction of good CRS solutions is considerably less than for the 2-D case.

Basing our efficiency measure on the number of f(·) evaluations after which a routine finds

its solution, can be criticised. Possibly it is better to let n denote the average number of f(·)

evaluations done by an algorithm before it is stopped. So defined effort in our experiment

is equal to 167 for Powell and 1000 for CRS. These numbers are relatively high and indicate

that the termination criteria defined by IR staff are quite tight for both routines; however,

by applying the same measure of efficiency, CRS (1000 log0.51 0.05 ≈ 4449) is still placed

well ahead of Powell (167 log0.92 0.05 ≈ 6000). Undoubtedly, so specified termination criteria

result from former IR experience that a new, better solution is likely to be discovered even

after a lengthy period of unsuccessful trials. This complies absolutely with the nature of

CRS, which needs time to replace its pool contents. It also fits the nature of modified Powell

routine, which often discards would-be new solutions if they are not optimal w.r.t. f(·) defined

for ‖ · ‖L∞ norm.

Given the multiminima nature of f(·) and decent Powell routine convergence for some

good starting point, one has the right to suspect that combining CRS with Powell in a hybrid

method could attain better efficiency than its component routines separately achieve. There

is, however, the usual issue about switching criterion selection. From what turned out in

power plant case it can be judged that unconditional switching after some kS iterations have

been completed (cf. p. 87) is more promising. To verify that, fifty repetitions of 3-D problem

optimisation have been performed using a hybrid algorithm with CRS being the preliminary

4Formula (5.2) results from the following reasoning: if 1 − r estimates probability of the event ‘an unsatis-

factory solution is found in a single algorithm run’ then we have to perform log1−r(1 − p) optimisation trials

in order to reduce that probability to the value of 1 − p. Since a single optimisation trial comes at cost of n

performance index evaluations, and (5.2) follows.

5.1. Waveguide dimensions optimisation 119

Figure 5.3: Histogram of performance index values for solutions found by Powell (black bars) and CRS

(white bars) routines alone as well as for a hybrid made out of them with the switching from CRS to

Powell made after kS = 130 (dark gray bars) and kS = 260 (light gray bars) performance index evaluations.

Numbers below bars denote interval upper values.

and Powell the final routines. The histogram of f(·) values found by the hybrid for two kS

values is presented in Fig. 5.3. For convenience reasons, the same graph contains results of

optimisation with only CRS and Powell routines, discussed above. The noticeable fact is that

f(·) values cluster in two intervals, < 0, 0.012 > and, more frequently, < 0.019, 0.267 >. The

latter one contains solutions that are not considered as interesting; they are located either

in the local optimum attraction area, or in the area around the global minimum — but for

some reason that minimum proximity has not been reached. From our point of view such

solutions are useless. Our attention is focused on those good solutions (wherever they lie)

with performance index less than 0.012. It turns out that the hybrid algorithm, in its both

versions, is clearly much more effective than Powell routine applied alone. Moreover, the

version with kS = 260 outperforms also CRS run alone. This could mean that Powell, started

from a good point, is able, in some circumstances, be more effective in finding a good solution

than the much praised CRS.

Let us see now how the efficacy in the considered interval relates to efficiency calculated

using (5.2). Table 5.1 gives the ranking calculated for the average number of actual f(·)

evaluations done by each of the tested algorithms. It turns out that by applying a hybrid

routine one can significantly reduce the effort needed to obtain a good solution with acceptable

confidence.

In another series of optimisation trials efficiency-based switching criterion was tested that

120 5. Solutions of waveguide design and optimal pricing problems

results\algorithm Powell hybrid hybrid CRS

only (kS = 130) (kS = 260) only

1. average number 167 223 338 1000

of f(·) evaluations

2. percentage 8 38 58 49

of good solutions

3. efficiency 6000 1397 1167 4449

Table 5.1: Statistics related to efficiency and efficacy of 3-D waveguide problem solving by various

algorithms (Powell routine, hybrid algorithm with CRS/Powell switching and diverse termination criterion,

CRS routine). 1. Average number of performance index evaluations calculated for those algorithm runs in

which f(·) < 0.012 was obtained as result. 2. Percentage of those algorithm runs in which f(·) < 0.012

was obtained. 3. Efficiency estimate calculated using (5.2), for the actual number of iterations made.

was exactly as the one presented in Section 4.2 but, similarly for IHE case, the results were

not impressive. The starting points produced by such switching algorithm in a single run, that

should mark milestones of decreasing efficiency, were all the same. Only in about 15% of all

simulation trials those milestone points are properly diversified. For comparison, the ratio for

kS-based switching rule was about 40%. Therefore, application of efficiency-based switching

rule has been discarded.

There is another conclusion that is interesting from the engineer’s point of view. Looking

at 2-D and 3-D optima locations (Fig. 5.4), one can see two things. The first is that in each

case they form nearly a line — it means that the proportions of the waveguide bend have to

be preserved in order to let the wave pass easily. The second is that 2-D and 3-D optima

lie quite apart. This is due to x3 variable, in 2-D case kept frozen at the value of 6.0, and

now let free. Since the optimal x3 value is consequently set very low (in the order of tenths)

by both CRS and Powell routines, x1 and x2 must be decreased accordingly — again, to

preserve the bend proportions. This seemingly unimportant detail indicates that a surplus

of decisions variables leading to continua of equally optimal solutions is not uncommon in

practical automated design problems.

As it was reported in [72], the main drawback of CRS is its efficacy that drops rapidly.

We had chance to observe such efficacy decrease while including x3 to the vector of decision

variables. The decrease proceeds very fast so that solving an 8-dimensional design problem

with CRS alone is out of question. However, application of the hybrid routine in such cases

5.1. Waveguide dimensions optimisation 121

20 20.5 21 21.5 22 22.5 23 23.5
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

x
1

x 2

Figure 5.4: Location of results obtained for 3-D problem optimisation (white marks) and for 2-D problem

optimisation (gray marks). Circles denote Powell solutions, and squares — CRS solutions.

has not been tested yet.

Interface adaptation

It must be stressed that all numerical experiments involving QW-3D software were performed

with kind approval and close supervision of the software manufacturer, QWED, Ltd. Many of

those experiments, designed jointly, have been carried out exclusively by a colleague from IR.

Such limited freedom for development and for testing of optimisation algorithms undoubtedly

had to affect also the choice of simulation-optimisation interface. (The limited freedom has

also its advantages, allowing to shift much research, testing and result interpretation effort

into the hands of a specialist and practitioner).

It was a precondition of cooperation that new optimisation algorithms must have been

integrated into QW-Optimizer. This has determined the programming language to be C++,

and the operation system to be MS-Windows. Furthermore, every new optimisation routine,

apart from the requirement for parallel implementation, had to be run in ‘quants’, periodically

giving up control to the system — so that it could fit the standard MS-Windows message

dispatch loop.

Parallel CRS implementation has followed the above guidelines. The parallel CRS processes

122 5. Solutions of waveguide design and optimal pricing problems

have been implemented as RWC5 threads; the critical section of point pool access has been

accomplished by using appropriate RWC mutex. Therefore, CRS can be executed concurrently

in its threads, undisturbed by the requirement to give up control periodically. It should be

also mentioned that, since QW-Simulator interface is, in fact, files, temporary directories had

to be created and removed automatically for each CRS thread, to protect against mutual

interference of QW-Simulator instances.

It should be noted that, since QW-Simulator is interfaced with files, it was possible to

write a separate optimisation module executable, like in case of IHE simulator. However,

it must be emphasised that writing a simulator-optimiser interface is usually quite a big

but hidden programming burden, and that obeying implementation rules imposed by QW-

Optimizer structure in order to avoid such effort was the easier and safer way.

5.2 IP services price optimisation

The problem of IP services pricing was chronologically the last one approached by the author.

Naturally enough, that approach was biased by the experience of problems discussed above.

The bias consisted in expecting similar difficulties to those already encountered: unconnected

domains, nonconvex performance index, unpredictable disturbances born by simulation pro-

cess. Consequently, such difficulties were found, one by one, and were presented in Section 2.3.6

There was no difficulty in finding difficulties common to all simulation-optimisation problems,

or rather to problems where switching and advanced numerics are in the play. So there was no

difficulty in pointing out optimisation methods, or their combinations, able to cope with them.

This is why those expected optimisation problems will be only mentioned here shortly in the

context of the simple self-made model known from Section 2.3. What is more interesting to be

discussed here is what a completely different problem can be generated by the same modeller,

if given into hands of a person with slightly different background.

5Rogue Wave Class (RWC) library provides a programmer with an abundant set of classes that are fun-

damental for development (e.g. string, date, thread) and simultaneously hide most of a concrete operating

system specifics used to implement their functionalities. RWC represents a line of products [98] that make it

possible to program applications at certain abstraction level.

6The market model presented in this thesis has been deliberately deprived of functionalities whose behaviour

may have effect similar to numerical errors. Such functionalities are deliberate rounding of particular internal

model variables and numerical integration of some distributions that are nonparametric but have their origin

in traffic statistics. Some of their potential effects are discussed in [60].

5.2. IP services price optimisation 123

Self-made difficulties are easiest to solve

As it was already mentioned, IP market model and the optimal pricing approach have their

predecessors in other products by one QOSIPS partner. Specifically, modified SLP routine

(presented in its pure version on p. 66) was usually employed for optimal price calculation.

However, formerly used models were either linear or easy to linearise, or gradients could safely

be estimated numerically. In case of PM there were reasons to expect analytical gradient

calculation to be impossible, and its estimation to be unreliable. This was due mainly to

heavy internal discontinuities that took place in tariffs for network utilisation. The switching

resembled somewhat current mobile telephony tariffication schemes, usually with big initial

charge when the transmission starts, followed by finer discretised charging.

Above all, justified anxiety dominated that the optimisation problem may turn out to be

non-convex and the modified7 SLP (called from now on SLR), being a local method, will fail.

Following the much frequented way, SLR was put into contest with CRS and COMPLEX to

solve the problem presented in Section 2.3.

Contour plot of the performance index (consisting mainly of utilisation-based income), fea-

sible set boundaries and location of solutions are given in Fig. 5.5. SLR was started four times

from four starting points [x1, x2]T , x1, x2 ∈ {0.3, 0.5}, with support for implicit constraints

on the number of customers accomplished through a penalty function. CRS and COMPLEX

were started 20 times from xT = [0.3, 0.3], i.e. from the corner opposite to where the solution

was. The two routines were used in the same form as presented in Chapter 4.

It is plainly visible that SLR, run with its original (i.e. adjusted for previous models)

parameters, does not work. Saying that we do not mean attaining the global optimum,

which SLR is not supposed to do, but simply getting closer to boundaries where penalty

gets activated. Only after — it must be admitted — minor modifications SLR, started from

xT = [0.5, 0.5] and with big computation budget, yields results comparable with that of CRS.

The case of SLR only supports the thesis that closed and specialised software products like

the one SLR was taken from, integrate quite well modelling and simulation routines. Location

of CRS and COMPLEX solutions comply with their general reputation and numerical results

obtained for the other models. COMPLEX easily detects that the solution must activate

a constraint, but it supports unconnected domains not that well as CRS does (note the three

COMPLEX solutions remaining in worse subdomains). Instead, CRS pays for its globality

7The modification of the original SLP method consists in that the solution of a problem linearised around

the current solution is not adopted as a new current solution. Instead, some point between the current and the

new solution is adopted. That is why the method is called Sequential Linearisation with Relaxation. The point

of this seemingly simple modification is a good heuristics for how much the new solution should be relaxed.

124 5. Solutions of waveguide design and optimal pricing problems

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0.3

0.35

0.4

0.45

0.5

0.55

x
1

x 2

Figure 5.5: Performance index contour plot for 2-D services pricing problem, with four feasible regions

bounded by the graph border or by black and white lines (cf. Fig. 2.17). Brighter areas denote better

performance. CRS solutions are marked with dots; COMPLEX solutions are marked with crosses; the

best SLR result and SLR starting points are marked with big and small circles, respectively. The problem

solution x? is marked with a black square.

5.2. IP services price optimisation 125

with imperfect solution quality.

Apparently, the conclusion could be that application of CRS/COMPLEX hybrid again (or

some other routines of equivalent properties) would do for this problem. However, no results

of numerical experiments will follow here, since a problem quite different quantitatively and

qualitatively was prepared by one of QOSIPS partners.

Unexpected simplifications can puzzle

It must be stressed that IP services market model developed and incorporated in PM was

exactly what was required and agreed upon by all QOSIPS parties. Nevertheless, the partner

that was to use PM, found the first release useless and, basically, not working. The reason was

the same as emphasised in Section 2.3: PM, by its flexibility, allows to define diametrically

different optimisation problems by changing such superficial parameters as bounds on x or

penalisation schemes for QoS failures. The model makers, as well as the rest of QOSIPS

consortium did not feel it necessary, and sometimes legally possible, to acquaint modeller

R&D team with day-to-day price setting practice of end user marketing team. Meanwhile,

those marketing realities in fact determine the pricing problem features.

The details are as follows:8

• Apart from being limited by model validity, the scope of decisions an NSP can make is

constrained by policy of other NSP’s that dominate the market. Despite the optimisation

problem was always being presented as a continuous one, the price decisions made by

humans were two-valued: either price something exactly as leading NSP’s do, or apply

some discount; try to make out which discounts are most appreciated by customers and

have least impact on the profit.

• SLA’s currently made by NSP with customers are loosely related to actual QoS in the

network — therefore the free component of our dynamic system response is very weak,

and the system itself becomes much simplified.

• Instead of several key prices, tens of decision variables are declared in the optimisation

problem formulation. Relations between those variables are next controlled by a multi-

tude of equality constraints (made out of inequality constraints) that render the feasible

set zero-measure.

One can try to find reasons for the above circumstances. Possibly, all of them result from

human imperfections, ignorance or conservativeness existent in all phases of model design,

8Some of those remarks and conclusions have been already reported in [10].

126 5. Solutions of waveguide design and optimal pricing problems

implementation, testing, deployment — and finally — staff training. However, like the faulty

simulator, they are perceived in this dissertation rather as pre-existent situation one has to

act upon.

The above circumstances have very serious implications. First, the model so limited vir-

tually behaves as linear. It loses all attributes that made CRS and COMPLEX the favourite

optimisation routines. Especially the last fact, the introduction of equality constraints, much

degrades performance of CRS applied alone, and disqualifies COMPLEX altogether. To say

the truth, all the above circumstances make the optimisation task simpler, provided one knows

them in advance.

In such situation SLR was obviously brought back to service, and has dealt with the prob-

lem perfectly. The concluding remark can then be made that one should approach unknown

problem with a set of various optimisation methods that rather complement each other than

compete each other.

5.3 Conclusions on suggested approach to optimisation

problems of unknown nature

Following what has been declared at the beginning, elements of the proposed solving approach

(cf. p. 82) will be pointed out for the problems presented in this chapter. As regards Point 1,

the routines selected initially (CRS and Powell, CRS and COMPLEX) cover the optimisation

in global and local stages, remain simple to modifications and (except Powell) are easily par-

allelisable. Their selection is affected by previous experience about their nature and about the

nature of the problem. As regards Point 2, both problems have been initially prepared and

solved in their simpler versions (2-D waveguide model, 2-D IP market model). The interface

design (Point 3) has been completely determined by external factors so that no freedom in its

definition was left to the author. However, support for parallel execution was the requirement

imposed in case of waveguide design problem. As far as Point 4 is concerned, the changes

that turned out to be necessary to solve simplified problems were far lighter than in power

system case; they appeared only in waveguide problem case. (They consisted in modifications

of Powell routine termination criterion, and in improved reflection operation in CRS.) The

suggestion contained in Point 5 to work out an efficient and effective procedure has been fol-

lowed in waveguide problem case, where switching on exhaustion of computation budget by

preliminary routine turned out to be most reliable and efficient procedure. As for IP services

pricing problem, neither this nor the next, Point 6, was applied because of complete model

redefinition by the customer.

5.3. Conclusions on suggested approach to optimisation problems of unknown nature 127

Perhaps numerous results of numerical experiments given in this chapter and in the pre-

ceding one have obscured the major goal of simulation-optimisation software end user. The

chase of best parameter values for optimisation routines and most efficient switching criteria

cannot override what is the most important: the user usually wants a satisfactory solution

— not a global one neither the exact one — just a good solution improving the current sit-

uation considerably. The fact that in the examples presented here a ‘global’ routine (CRS,

EA) was run first did not mean that finding the global solution was the prime goal. First,

used algorithms are merely heuristics and, despite their global nature, do not guarantee the

global solution to be found as does e.g. Meewella-Mayne method [69]. The major point in

their application is to find a decent starting point for another, more efficient method to be run

as the next one. Similarly, running that method with tight termination criteria that resulted

in solution accuracy impossible to obtain in the real life was done deliberately to find out the

nature of the solution (e.g. whether it lied on constraints). In practice, efficacy and robustness

of the optimisation routine are the main objectives; the efficiency can be, to some extent,

attained by more powerful computer hardware and parallelisation.

The approach presented here is located between the most advised but often not feasible

strategy of profound preliminary examination of the underlying model, and the quite often

practised strategy of ‘brute force’, which skips over any model information to apply some sort

of complete scan of solutions. The hybrid algorithms presented here are only heuristics and,

although backed by scores of successful practical applications, do not guarantee the solution

of any problem — and therefore Thesis 2 is not proved. To compensate the loss, another thing

is guaranteed — namely, that following the procedure proposed on p. 82 one gets involved

in the problem specifics as little as possible, only as much as it is necessary to find some

satisfactory solution. The question may be asked, why actually to prevent someone from

getting deeper into the model — especially that many books suggest to do the opposite? It is

because profound recognition of model nature is, of course in particular cases, impossible or

costly in sense of human effort. Still more difficult is changing the existing model behaviour.

For example, in case of IHE modeller, the core numerical routines are the heritage of many

years’ work of other specialists and, at least in the period of cooperation with IHE, there were

apparently no human resources to be put at work to improve the model. In case of QW-3D

the simulator is a commercial product, and any change of its behaviour is impossible. The

only approach that guaranteed the author the minimum autonomy of work in that case, was

to carry out ‘behavioral studies’, i.e. to rely on the model output only.

Let us now argument shortly the subsequent points of Thesis 2 with the experience pre-

128 5. Solutions of waveguide design and optimal pricing problems

sented in this one and the previous chapters. As regards Thesis 2a suggesting the appointment

of component routines for a hybrid algorithm, the following can be stated. The candidate algo-

rithms should constitute a team capable of carrying out the optimisation process in all phases.

It seems that a global routine, regardless whether CRS or EA or some other one, is needed

for all considered optimisation problems. Next, the local routine depends on the problem,

but in general either direct search or gradient algorithm is executed. As regards Thesis 2b

suggesting making ad hoc routines modifications, those modifications should be applied only

in order make a workaround for a particular difficulty. They should not be re-used blindly

for other optimisation problems; they rather ought to be introduced or developed only on de-

mand. As far as Thesis 2c is concerned, it is difficult to establish uniform criteria for switching

between the algorithms. Here, only efficiency-based switching rules have been considered and,

regardless of particular results, the efficiency should remain as one of those criteria in one

aspect: prolonging lack of progress must result in running another routine. A promising but

demanding switching criterion could be the change of problem nature — e.g. detecting at some

point that the problem can be linearised. However, for the examples considered such criterion

has not been tested. The postulate in Thesis 2d to speed up the calculations by running them

in parallel has as its aim improving the efficiency only, and therefore must always give way to

efficacy. For example, if some gradient routine matches best the problem, it should be run,

although sequentially.

All of the suggestions and conclusions made here have, possibly, been made elsewhere

in the context of practical problems that were met and successfully solved, and therefore,

considered one by one, do not contribute to the current scientific knowledge significantly.

What is considered here to be the real added value of this dissertation is the presentation of

those conclusions together. They are common to all the three presented practical cases.

Chapter 6

Summary; a proposal for automated

simulation-optimisation problem

solving

This chapter summarises all the observations reported so far in the preceding chapters. An

important part of this summary is the recollection, in Section 6.1, of positive and negative

evidence concerning simulation-optimisation problems solution that leads to formulation, in

Section 6.2, of a proposal for an automated and universal environment suiting problems of the

considered class. Justification for usefulness of such environment construction itself, as well

as the argument for details of its workings, are to support Thesis 3. The dissertation closes

with final remarks that are given in Section 6.3.

6.1 Motivation for automated simulation-optimisation

problem approach

The proposal of an automated environment for simulation-optimisation problems solving is

quite a natural consequence of facts presented so far. The results of analysis and attacking of

the three practical problems, either satisfactory or disappointing, provide the main drive for

such environment. They are reinforced by the fact that commercial modelling and optimisation

tools, similar in their field of application, exist and thrive. Their presence should rather

encourage and inspire creation of another optimisation environment being similar in idea but

alternative in details. These two incentives are amplified by postulates formulated [19] by

senior scientists and practitioners. Let us present the motives in detail.

130 6. Summary; a proposal for automated simulation-optimisation problem solving

Motivation coming from the three practical problems

Undoubtedly, the three practical simulation-optimisation problems considered here exhibit

common features. The most distinct one is their performance index behaviour which (although

this is visible at various magnification scale) demands the optimisation problem to be stated

as a global one. The reasons for it may be the feasible region shape, or the performance

index shape. Next, the optimisation task nature usually changes in the neighbourhood of an

optimal solution: the initial obstacles vanish or, more commonly, get replaced by others like

the simulation noise.

Changing problem features demand application of various optimisation routines. Fortu-

nately, in cases when optimisation efficiency is not a prominent issue, only few methods suffice

to serve most problems. Moreover, they do not have to incorporate advanced mathematics in

order to carry out the task. EA, COMPLEX and SLP can be an exemplary triple that can

be assumed to be in position to solve most of simulation-optimisation problems.

Simulation-optimisation problems are also united by a single universal solving approach,

whose quintessence is to run routines currently best matching the problem in a sequence, and

to make ad hoc routine modifications (alternatively, to employ a routine from outside the basic

set) only under mounting difficulties. For the modifications to pay off those routines should

remain simple to understand and inspect, simple and safe to change, able to be relinked with

the rest of software.

The fact that simulation-optimisation problems share so many features clearly prompts

for constructing a multi-purpose framework managing all problems similarly. The unresolved

questions (e.g. the criteria for switching between routines) also encourage further research

with purpose to determine how uniform can the switching rule be — and how much must be

left to be defined by the user specifically for a considered problem.

Motivation by existence of commercial optimisation tools

Skillful merging of selected optimisation routines, performed by experienced practitioners, has

already led to successful creation and marketing of tools for simulation-based optimisation.

Products like OptQuest, OptdesX or Epogy have already been presented in Section 3.3, and

NOVA has been mentioned on p. 85. They follow, although to various degree, the paradigm

of switching between routines, of utilising all extra knowledge of the problem (if provided by

the user), of allowing in-house simulation (and, sometimes, optimisation) code to be linked in.

They are reported to be effective e.g. in design optimisation or in scheduling and management

problems.

6.1. Motivation for automated simulation-optimisation problem approach 131

Therefore, it is quite natural that those products inspire the author to propose and pro-

totype a simulation-optimisation environment of his own that hopefully would incorporate

advantages and overcome disadvantages of the existing products. Among the advantages to

be appreciated are procedures for setting parameters of optimisation routines (cf. Epogy).

Also, gradient estimation under simulation noise is their valuable feature. On the other hand,

there are things awaiting improvement: the support for simulation failures and user provision

with detailed information what actually is going on. Generally, the disadvantage of of-the-

shelf simulation-optimisation tools, as often expressed by author’s fellow researchers, is their

opaqueness and closeness that confines user activity only to using the product, which definitely

does not suffice an academic.

Postulates for simulation-optimisation future as given by authorities

Experienced developers and researchers have been asked in [19] to express their position state-

ments as to the future of simulation-optimisation given the current state of the art. The

common opinion and postulate of the four authorities is that more effort should be put in

making simulation and optimisation work together, and in not treating each other as a black

box. Specifically, Royce O. Bowden distinguishes six domains of simulation-optimisation where

the cooperation should take place:

1. Interfaces — addresses interfacing between simulator and optimisation routine, and be-

tween optimisation routine and human user.

2. Problem formulation — addresses construction of the performance index and constraints.

3. Methods — addresses the set of methods used conventionally in simulation-optimisation

problems.

4. Classification — addresses the process of classification of methods that are suitable to

a specific problem.

5. Strategy and tactics — addresses the most efficient use of available information and

resources.

6. Intelligence — addresses the intelligence embedded in the solver to select the strategic

approach and tactical employment of various techniques based on the problem classifi-

cation.

The above postulates do not contradict the approach proposed on p. 82. In fact, both suggest

the utilisation to the maximum extent of the available information about the model (Domains

132 6. Summary; a proposal for automated simulation-optimisation problem solving

3, 4 and 6) and the available parallel computation environment (Domain 5). Possibly, the

key domain which enables formulation of the others, is developing the common simulation-

optimisation interface (Domain 1). Existence of such interface conditions further automation

of simulation-optimisation process as a universal routine, and not in the context of a concrete

problem. However, such an ambitious task of simulation-to-optimisation and optimisation-to-

user interfaces standardisation cannot be carried out without involvement of some influential

consortium, still to appear.

6.2 Simulation-Optimisation Framework proposal

Simulation-Optimisation Framework (SOF) is the name of a computation environment pro-

posed and prototyped by the author. It has emerged from the motivations given above. The

following assumptions lie at its bottom:

• It is possible to distinguish a set of basic simulation-optimisation features; they are not

many (like there are not many different routines required to solve a problem);

• It is possible to distinguish a set of basic optimisation routines that will be able to solve

most simulation-optimisation problems.

• It is possible to come up with a common scheme for selecting the routine actually best

fitting the problem.

Moreover, to make SOF opened to experiments and amendments, the following extra guidelines

must be followed:

• SOF structure must allow to introduce easily user-delivered optimisation routines, and

to override the built-in behaviour (e.g. to supply user-defined routine ranking algorithm).

• To provide environment elasticity, SOF core should be made without any particular

assumptions about the nature of problems and about the optimisation routine specifics.

• Environment design must allow for execution in parallel and distributed systems.

Some of those postulates may actually seem contradictory (e.g. possibility to introduce non-

standard algorithm switching strategy and the requirement that such switching should stay

abstracted from the problem specifics). However, SOF proposal attempts to be a step forward

from the current state of the art. Construction of such framework can have both didactic and

practical outcomes. The didactic one is the necessity of distinguishing problem features in

6.2. Simulation-Optimisation Framework proposal 133

order to make use of the mechanisms for automated selection of an appropriate optimisation

routine. The practical is hopefully a robust and open general-purpose optimisation engine.

Below are given the details of SOF design, starting from the outline, the implementation

environment, through problem definition, to the switching routine. This description should

rather be perceived as mental experiment since no practical results are available yet (although

SOF prototype exists in its early version).

Selection of interface and development environment

SOF design must be performed carefully in order to follow all the above construction guidelines.

Specification of interface to simulation and optimisation modules is the crucial point here.

Definitely, all simulators should be interfaced uniformly in order to be uniformly managed

by SOF core. The same applies to the optimisation module interface. On the other hand,

those interfaces should be able to convey problem-specific information between simulation and

optimisation — and this feature ought to remain transparent to SOF core.

Such interface specification as well as the selection of software technology used for imple-

mentation is not an easy task considered numerous limitations accompanying both solvers and

simulators (cf. interface adaptation descriptions in Chapter 4 and in Chapter 5). Following

the observation that it is the simulator that is usually the most opaque and inaccessible piece

of software, minimum requirements must be imposed on its interface capabilities. It is the

optimisation routine that must be charged with the costs of favouring the simulator — which

is hopefully the correct decision since the suggested routines are destined to be modified (if

needed) anyway, and they are publicly available in the source code form.

The selection of language for interface definition has as the main goals the easiness of

coupling with the simulator and openness of the interface with purpose to supply upward

compatibility. Java 1 has been dropped out despite its easiness and readiness for operation in

distributed systems because its interface can be defined only statically. CORBA Interface Def-

inition Language (IDL) has been selected as the language for interface specification. CORBA

supports dynamic interface building and querying, which makes it possible for simulation and

optimisation modules to define any extra methods. CORBA is simultaneously fully portable,

unlike DCOM2 — a competitive solution.

The core, the central module of SOF, as shown in Fig. 6.1, is the optimisation manager.

This module task is to intelligently choose which optimisation routines from the candidate set

will be currently run. Such defined manager role has the following implications to the inter-

1See Section B.2 for an overview of programming tools discussed here.

2Currently, the prototype version uses static interface and is implemented fully in C++.

134 6. Summary; a proposal for automated simulation-optimisation problem solving

optimisation −estimateProgress
−getEffort
−run

simulator

−evaluateFit
−getNextSolution

optimisation routine noptimisation routine 1

−evaluateFit
−getNextSolution

manager

Figure 6.1: SOF structure. Optimisation manager maintains a single simulation module and a number

of routines contained in optimisation modules. Method names are given using teletype font.

face definition. First, to provide a means of terminating one optimisation routine in favour

of another one, the operations provided by an optimisation module should perform only one

optimisation iteration. The consequence is that optimisation modules should keep their state

between calls that are made in loop by the manager. Considered much better control over

the optimisation code, such assumption does not seem excessive. (Otherwise, a preemptive

optimisation would have to be assumed, which would have gravely affected the software de-

sign.) Second, in order to make it possible for the manager to perform initial ranking of the

maintained routines (when no performance data are available yet) an optimisation module

should provide a method assessing its own applicability to the problem. Third, this initial

method-to-problem fit estimation should be verified and affected by the true method efficiency.

It requires the simulator to provide methods calculating both progress and effort consumption

made by the optimisation routine. Therefore, the interfaces to simulation and optimisation

modules are proposed to be as follows:

The simulator:

run — Runs simulation for a given problem P .3

getEffort — Calculates computation effort of the last performed simulation.

estimateProgress — Evaluates quality of solution represented by problem PA

relative to another solution represented by PB.

The optimisation routine:

getNextSolution — Runs one optimisation iteration and returns the new solution

(represented by problem Pk+1).

3P is a set containing complete problem description: values of decision and dependent variables, definition

of performance index, definition of constraints — and any other problem specific data. P appears to the

optimisation manager as an amorphous piece of data. The manager main activity, i.e. best routine selection

is based only on performance; the manager remains ignorant of the problem definition.

6.2. Simulation-Optimisation Framework proposal 135

OutputConstraints

BoxConstraints

Feature

Input Output Objective Constraints AdjustableAccuracy

DeterministicOutput UnimiodalObjective

InputConstraints

FunctionalConstraints

Figure 6.2: Hierarchy of SOF classes representing problem features that are considered to constitute

the standard set. Further derivation of child classes specifying the problem description is possible (as

presented in case of constraints by a mesh of unnamed squares).

evaluateFit — Evaluate its own fit to a problem P .

Note that such interface proposition conforms to the guidelines. Encapsulation of an

existent simulator should not be a painful task: the only two extra requirements are to provide

functions calculating simulation effort and progress (which, in the simplest case, can be based

on simulation running time, resp. on the performance index value). Adapting an optimisation

routine is more time taking: especially making it optimise iteration by iteration and evaluating

quantitatively its fit to the problem may require some knowledge and some discipline in order

to maintain assessing criteria the same for all solvers.

The fact that simulator is stateless and available through CORBA interface greatly facili-

tates parallel and distributed implementation. One of possible parallelisation techniques is to

install a number of simulators in arbitrary locations, and to make them available for optimisa-

tion routines through a proxy, thus making a parallel virtual machine. Similarly, optimisation

routines can be run anywhere, and in particular they may serve only as an interface to some

local proprietary solvers.

Problem features classification

The key for SOF elasticity and openness should be the way a problem is defined. A set

of basic types of simulation-optimisation problem attributes can be distinguished; each of

those attributes can be represented as an object with well defined interface. Attributes form

a hierarchy (implemented using multiple object inheritance), where a subclass usually defines

a narrower problem than its superclass. The proposed set of basic simulation-optimisation

attributes is presented in Fig. 6.2. All features inherit from abstract Feature class. Let us

describe them shortly:

136 6. Summary; a proposal for automated simulation-optimisation problem solving

Input — Contains a vector of decision variables being the simulation input.

Output — Contains a vector of dependent variables being the simulation output. The

output may be affected by a sort of randomness; to define a subclass of deterministic

problems, specific DeterministicOutput subclass is proposed.

Objective — Pure abstract class; provides prototype of a method calculating the perfor-

mance index value for a given problem P . Also, abstract UnimodalObjective subclass

is provided, which should be used for problems known to have a unique optimum. User-

provided classes should implement the performance index calculation methods.

Constraints — This abstract class and its subclasses provide means of specifying prob-

lem constraints, starting from the most general ‘satisfied/violated’ verdict, through con-

straints of various degree of regularity (FunctionalConstraints, BoxConstraints) ap-

plied for various kinds of variables (InputConstraints, OutputConstraints). This hi-

erarchy can be extended; multiple inheritance can be used to construct classes defining

precisely constraints for a given problem.4

AdjustableAccuracy — Contains a vector of simulation parameters, particularly those

influencing the precision of calculations.

The above set of features suffices to distinguish between the basic classes of problems (stochas-

tic/deterministic, local/global, constrained plainly/implicitly, with/without simulation accu-

racy control). This hierarchy can further be expanded and standardised, if needed. The

standard features define all that simulation-optimisation problems may have in common. The

only thing cannot be made a standard feature is the simulation itself, i.e. the definition of

(1.2) or (1.3), which is the essence of the simulation-optimisation problems.

Therefore, optimisation works as follows. First, problem features are constructed, and

packed into a set P . Next, the interplay follows Fig. 1.1: the currently selected optimisation

routine changes Input contents and passes P to the simulator; the simulator changes Output

contents and passed P back to the routine, where the performance index is estimated by

Objective — and so on. One may ask about the point in dragging all problem information,

contained in P , back and forth between the simulator and the optimisation routine. The ex-

planation is that any optimisation routine is liable to change problem definition (e.g. to detect

the optimum proximity — and to reformulate the problem as global and linearly constrained).

4The set of a class superclasses may be retrieved in the course of program execution using run-time type

information (RTTI) mechanism, and used e.g. by evaluateFit method to infer about the problem specifics.

6.2. Simulation-Optimisation Framework proposal 137

Since at any time the optimisation manager may decide to switch to another routine, the

actual problem full definition must be contained within P .

Optimisation routines ranking and switching

There is a dilemma, which candidate algorithms should be given privilege to use the limited re-

source, the simulator? It becomes even more crucial if no more than one instance of simulator

is available, and also because SOF is not a complete preemptive environment capable of sus-

pending a routine invoking too many simulations in one optimisation iteration. For the answer,

evaluateFit must be called at the very beginning for every candidate optimisation routine

to make the first assessment of that routine applicability to the problem. What evaluateFit

does is that it calculates a vector z of values zi ∈ {−1}∪ < 0, ∞); each zi represents an

estimate of how well the i-th feature can be handled (the bigger zi the better). (The value of

−1 means that a routine is completely unfit and should be discarded.) Two remarks should

be made on this fit estimation procedure. The first is that such initial fit can really reflect

a routine potential superiority due to e.g. utilisation of problem extra information the other

routines are not aware of. Consider for example a case where UnimodalObjective in Fig. 6.2

is inherited by, say, UnimodalObjectiveWithGradient, a gradient information available from

the simulator. Routines incapable of using that piece of information directly would customar-

ily set the zi corresponding for the base feature, Objective, to 1. Instead, a gradient-aware

routine can set zi to O(dim x), expecting performance superior to non gradient-aware meth-

ods. The second remark (somewhat contradictory to the former one) is that in the course

of optimisation those initial fits get soon completely overridden by the actual efficiency of

routines. Such distrust to initial fit estimates must exist in order to anneal potentially faked

fits assumed by over-optimistic routine makers. Unfortunately, this fit estimation scheme is

not very robust as it requires concerted action performed in all optimisation routines, which

happen to be of various provenance. Hopefully, the following resource-to-routine allocation

procedure could mitigate this problem.

The resource (i.e. the simulator) allocation to candidate optimisation routines is suggested

to work as follows. Resource allocation is done in turns. In each turn k, every optimisation

routine i that is in play is given computation credit ck,i, thus making the overall i-th com-

putation credit ĉk,i = ĉk−1,i + ck,i. Next, getNextSolution is invoked in a loop, with the

overall effort êi being accumulated, until êi ≥ ĉk,i (i.e. until computation credit is exhausted).

The question is what rules should the resource allocation algorithm follow. Naturally enough,

it should promote routines that are best progress makers, or most efficient progress makers.

The second option seems more appropriate as new algorithms come into play in the course of

138 6. Summary; a proposal for automated simulation-optimisation problem solving

optimisation, since it is unfair to judge them after their absolute progress. Therefore, the al-

location criterion based on the routine current efficiency should be applied. At the same time,

potentially inefficient and initially badly ranked routines ought to be given some lump sum

of computation budget in order to verify initial fit estimations practically. In SOF prototype,

each routine is allocated a credit

ck,i = ēk−1 min

�
ηk,i�

N
j=1 ηk,j

N, 1 � , (6.1)

where ηk,i is i-th routine current efficiency (explained later), and ēk is the average effort per one

getNextSolution call, calculated for all N currently used optimisation routines. Therefore,

the allocation unit is the average effort per optimisation step, and the amount allocated is

either 1 or a value proportional to the current efficiency ratio to the sum of all efficiencies.

Efficiency definition is a delicate issue. Recall conclusions from Chapter 4 and from Sec-

tion 5.1 that the mechanisms used there did not work properly. The lesson learned is that

milestones generated by so defined efficiency were unreliable and often unrelated to actual

progress. The conclusion may be that efficiency should be ‘more smooth’ and possibly not

based just on fixed width history window w. That is why fading effect is applied to efficiency

computation in SOF. The efficiency of the i-th optimisation routine in k-th turn is defined

recursively as

ηk,i =
pk,i + aηk−1,iẽk−1,i

ek,i + aẽk−1,i
, with ẽk,i = ek,i + aẽk−1,i , (6.2)

where pk,i is the progress made in one turn, ẽk,i is the discounted effort calculated for turn k,

and a is the discounting ratio. Such efficiency definition causes big efficiencies experienced in

the initial optimisation phase to be gradually forgotten, thus making it possible to compare

routines that were in run for long with those freshly introduced. Obviously, this scheme has

shortcomings: a routine that steadily makes small improvements is preferred over the one

which, after ineffective exploration phase (like in EA), comes up with a solution far better

than what the former routine has ‘minced’. This phenomenon can be controlled by adjusting

a, or by providing — through estimateProgress — an alternative definition of progress.

The suggested procedure for selecting routines to be affected by the simulator resource

allocation is as follows. As each routine is attributed by a vector of fits, their Pareto subset

can be found. Next, each of the Pareto methods is introduced into resource allocation scheme,5

one routine in each turn. When all Pareto methods are already in play, another Pareto subset

is found, after some delay, among the remaining methods. The procedure is repeated until all

5A routine is initialised with the problem definition taken from the routine that made the biggest progress

(calculated by estimateProgress) computed w.r.t. the initial problem definition P0.

6.3. Summary 139

available routines (except those branded with −1’s) are in. Thus, at the end of the day, every

routine declaring the faintest ability to solve the problem, is given its chance.

It was mentioned that a problem definition is likely to be changed, in the course of opti-

misation, by any optimisation routine. Such change would mean that the whole procedure of

routines classification would start from scratch, or rather from the modified problem. This is

a fragile spot of the whole algorithm since phenomenon of problem redefinition is given the

highest precedence, and cancels so far collected initial fits and efficiency statistics. Therefore,

it should be used in optimisation routines sparingly. Alternatively, one can consider a change

of the managing algorithm so that problem change would be not so catastrophic, e.g. it may

cause only a small part of simulation resources to be delegated for solving of such a changed

problem.

Simulation-Optimisation Framework outline given here aims to support Thesis 3. This

thesis claim of classifying problems by attributing them with properties coming from a stan-

dard set is met here by a proposition of problem standard features as in Fig. 6.2. Thesis claim

for selection of core candidate optimisation routines can be satisfied in many ways if efficiency

is not the major issue. Alternative proposals exist (see p. 80); the author’s proposal is to

use EA, COMPLEX and SLP routines.6 Thesis claim for automated solver classification and

switching is satisfied by SOF optimisation manager design; the proposed system architecture

is portable, parallelisable, universal and expandable. SOF prototype tests have been made for

simple problems and their results were promising.

6.3 Summary

With the growth of computing capabilities, the domain where heavy numerics is being applied

is expanding, affecting branches more and more unfamiliar for optimisation practitioners.

Therefore, when there appears the need to couple simulation with optimisation, the gap be-

tween the involved parties is very big: very often optimisation practitioners are not able to

adopt all the knowledge of their colleagues, simulation practitioners, in order to develop an

algorithm tailored to the specific problem. On the other hand, simulation practitioners, when

trying to apply, on their own, an advanced optimisation procedure to their problem, are not

trained enough to control all its intricacies. What they do then is to apply simpler optimi-

6As it was reported in Section 5.1, EA was once applied by IR to the waveguide design problem. The reason

for IR’s interest in CRS was EA’s poor efficiency; it does not, however, means that EA is incapable of solving

that problem altogether. Therefore, suggesting EA as the core optimisation routine does not contradict the

results presented in Section 5.1.

140 6. Summary; a proposal for automated simulation-optimisation problem solving

sation routines, mostly heuristic, deprived of underlying complex mathematics. Usually they

succeed because the models they use anyhow generate problems intractable by the advanced

procedures.

The cases presented in this dissertation support the above observation. Most of the au-

thor’s fellow researchers did not receive profound education in optimisation theory. Neither

was it needed to solve their problems; after all, the algorithms that have been applied were

conceptually much simpler and theoretically much less elaborate than classic advanced meth-

ods like GRG or SQP. Fortunately, it turns out that they, especially if run in parallel, may

cope with the presented problems.

Probably, scientists in cases like those presented here will go for developing and adapting

such simple optimisation routines by themselves, without consulting an optimisation profes-

sional. And they will be successful, especially with methods as robust as EA is. In such situa-

tions this dissertation attempts to suggest them an easiest possible approach to a simulation-

optimisation problem. The dissertation also tries to make out of the three considered cases

a common software structure, and to point out how to utilise such structure in creation of

a universal simulation-optimisation framework. It is hoped that in the future SOF, probably

not destined to become any standard, will encourage the colleagues from scientific commu-

nity to discuss legitimacy of such standardised approach to simulation-optimisation problem.

To author’s knowing, no such open-source working environment exists, or at least none has

been reported in the literature. On the other hand, there is much rather spoken evidence

that simulation-optimisation problems are easily solved with multistage hybrid optimisation

algorithms.

The interesting points of this dissertation, apart from the proposed approach itself, can be

the details of COMPLEX procedure adaptation to handle simulation failures and the detailed

studies of switching criteria for power system models optimisation. Out of probably a number

of weak points of this dissertation, the author himself indicates notoriously poor theoretical

background of the proposed optimisation algorithms and the resulting lack of support for the

proposed approach other than through the three case studies. However, correctness of theses

stated here can possibly be verified by the future developments in the field. Quite important

contribution of this thesis is the demonstration that feasibility constraints — like those present

in IHE simulator — may, if carefully handled, not prohibit the finding of an optimal (or, at

least, good) feasible practical solution.

This summary is still to answer the anxious question about the fate of optimisation spe-

cialists, apparently not so much required for cases presented here. There are two options, both

optimistic. The first is, that most ad hoc made simulation-optimisation software will some day

6.3. Summary 141

become commercial products7 and, leaving the stage of prototype, will have to be equipped

with tailored optimisation routine. The second is that the existing solvers will expand their

modelling capabilities and will be used as unified tools for simulation and optimisation. Both

possibilities require involvement of high-class optimisation theoreticians and practitioners.

7Including any software made by the academic community.

Appendix A

Stochastic optimisation

Conventionally, the objective of stochastic optimisation is to minimise the expected value of

performance index being the function of both decision and random variables

min
x

E
ξ

f(x, ξ) , (A.1)

where ξ is some random variable of finite variance. Such problem formulation dominates in

the literature. Therefore, (A.1) is a stochastic analogue of (3.1). Virtually any deterministic

method can be employed for stochastic optimisation provided that the function value and

derivatives are replaced by their appropriate estimates [86, p. 22] — but such an ample switch

from the original algorithm to its stochastic counterpart is usually inefficient. Therefore,

numerous algorithms have been designed specifically for stochastic optimisation — and have

become subject of many overviews [86, 3, 43].

As the result of literature searches, the view emerges that stochastic optimisation problems

are presented and solved in two ways. The first group are cases where performance index is, in

some way, regular and, consequently, great significance is placed by the authors on theoretical

foundations of the applied optimisation routines. The second group is constituted mostly by

discrete problems, with the emphasis put on successful combination of various optimisation,

modelling and approximation techniques used for solution finding. In this appendix, optimi-

sation algorithms are classified according to the type of information and assumptions they

need to operate upon. An important category, called stochastic approximation (SA) methods,

follows the well known Cauchy’s steepest descent scheme that requires both objective function

and gradient values to be available. Another approach, called response surface methodology

(RSM), assumes that the performance index can be approximated by a deterministic function

from a certain class. Those algorithms which operate with only the performance index value

available, making no particular assumptions of the shape of the performance index, form the

third category of the direct search methods. Except for SA, the optimisation routines present

A.1. Stochastic approximation 143

in those categories are either fundamental or have already been presented in Chapter 3, and

therefore Section A.2 (RSM and similar techniques) and Section A.3 (direct search methods)

will focus on necessary adaptations and successful application of those routines for optimisation

problems. Instead, SA will be presented in full detail in (Section A.1): theory, modifications

and applications.

A.1 Stochastic approximation

Stochastic approximation methods solve continuous stochastic simulation-optimisation prob-

lems as formulated in (A.1) by utilising a random estimate ĝ(x, ξ) of the objective function

gradient g(x) = ∇x Eξ f(x, ξ). Algorithms of this type generate a sequence {xn} of problem

solution estimates, with the generic formula for one algorithm iteration being

xn+1 = xn − anĝ(xn, ξ) , (A.2)

where {an} is a sequence of positive step sizes such that
∞�

n=1

an = ∞ and
∞�

n=1

a2
n < ∞ . (A.3)

The above algorithm should converge to a point where ĝ(x) = 0, which does not necessarily

have to be the optimum x? of Eξ f(x, ξ). However, this original SA scheme is rarely applied

without further preconditions or improvements. To ensure that indeed the routine (A.2)

converges to the global minimum additional assumptions are required, in particular that the

performance index and the optimisation domain are convex. This, however, does not yet

ensure the proper convergence if the performance index grows faster than quadratically when

x changes. Moreover, such basic optimisation scheme still does not support the constraints

on x. Also, the proper choice of {an} affects the algorithm convergence.

Gradient estimation techniques

There exist three basic gradient estimation procedures used by SA: finite differences, infinites-

imal perturbation analysis (IPA) and likelihood ratio method (LR). For another one, the

frequency domain experimentation, see [57].

Applying the universal method of finite differences, as requiring the least information of

f(·), is often the only possible approach. However, this estimator has a big variance, is biased

and computationally demanding. The estimate is obtained either by forward difference

ĝ(x, ξ) =
dim x�

i=1

ei
f(x + cei, ξ) − f(x, ξ)

c
(A.4)

144 A. Stochastic optimisation

or by central difference formula

ĝ(x, ξ) =
dim x�

i=1

ei
f(x + cei, ξ) − f(x − cei, ξ)

2c
. (A.5)

Here, ei denotes a versor along the i-th axis. Formulae (A.4) and (A.5) require dim x + 1 and

2 dim x evaluations of f(·), respectively. The optimisation scheme (A.2) with a finite differences

formula applied for gradient estimation is known as Kiefer-Wolfowitz (KW) algorithm.

An important improvement to the above scheme was proposed in [107]. Instead of dim x+1

or 2 dim x evaluations of f(·), it requires only 2m evaluations, m being considerably smaller

than dim x. The idea is not to make an estimation of ĝ by separate shifts of x in each direction,

but to perturb x simultaneously in all directions m times, and then to calculate the mean

ĝ(x, ξ) =
1
m

m�

i=1

�
f(x + cδi, ξ) − f(x − cδi, ξ)

2c

dim x�

j=1

ej

eT
j δi

� . (A.6)

In (A.6), δi is a realisation of some zero-mean random variable, and c is a scaling factor

(actually, c is not constant but predetermined for each algorithm step n, usually cn = c/nγ,

c, γ > 0). By applying simultaneous perturbation gradient approximation method, significant

speed-up of computations can be achieved, especially for moderate and large scale problems.

An exemplary practical application of this routine is reported in [63].

IPA and LR methods do not require running dedicated simulations to estimate the per-

formance gradient. Both procedures are based on the observation that the present results

of, say, N simulations (i.e. N realisations of ξ) can be used not only for computation of the

performance value but for computation of the gradient as well. For the considered class of

problems calculation of the performance value usually involves some kind of averaging, and

the intermediate results (i.e. ‘paths’ of a discrete event dynamic system) are left unused by

the finite differences method. In IPA and LR, by the careful inspection of those results one

can infer about the behaviour of the system if x were going to change. The advantage of IPA

and LR is that they often yield unbiased and consistent estimates but they require knowledge

of the structure of the simulated stochastic system — namely the cumulative distribution

function for the random variable ξ is supposed to be known.

Formally, both IPA and LR start off conceptually from the formula for the gradient of the

performance function

∇ E
ξ

f(x, ξ) = ∇ � f(x, ξ)p(x, ξ)dξ = � p(x, ξ)∇xf(x, ξ)dξ+ � f(x, ξ)∇xp(x, ξ)dξ , (A.7)

where p(·) is probability density function (p.d.f.) of the random variable ξ. Since in general

both f(·) and p(·) can depend on x, the formula splits finally into the sum of two integrals.

A.1. Stochastic approximation 145

The former integral can be estimated by computing the mean 1
N

�
N
i=1 ∇xf(x, ξi) for the same

realisations ξi of ξ that were used for performance computation. The handling of the latter

depends on the method: IPA transforms the problem to make it zero altogether, while LR

computes it utilising still the same realisations of ξ.

In LR (also known as score function method), the second integral is rewritten as follows

� f(x, ξ)∇xp(x, ξ)dξ = � f(x, ξ)
p(x, ξ)
p(x, ξ)

∇xp(x, ξ)dξ = � p(x, ξ) � f(x, ξ)
∇xp(x, ξ)

p(x, ξ) � dξ

(A.8)

so as to resemble the first integral in (A.7). Now it can be estimated by computing the mean
1
N

�
N
i=1 f(x, ξi)∇xp(x, ξi)/p(x, ξi) for the same realisations of ξ as previously.

IPA represents f(x, ξ) with ξ of any type (in particular, depending on x) in an alternative

way — by a function F −1(x, υ) such that υ is a random variable uniformly distributed in

< 0, 1 >dim υ (and, certainly, independent of x). Under these conditions, and following the

rules from (A.7), we have

∇ E
ξ

f(x, ξ) = ∇ E
υ

F −1(x, υ) = ∇ � F −1(x, υ)dυ = � ∇xF −1(x, υ)dυ . (A.9)

The above equation appears simpler than formulae for LR (A.7, A.8) because all the analytical

workload is hidden in the formulation of F −1(·), which is possible only if one knows how

to make ξ out of υ. It was observed that differentiating F −1(·) resembles tracing system

behaviour in presence of infinitesimally small changes of x, and that is why IPA earned its

name. The gradient in IPA is approximated by computing the mean 1
N

�
N
i=1 ∇xF −1(x, υi),

where υi are realisations of υ, analogously to ξ.

LR is applicable to a larger class of problems than IPA but at the cost that estimates

obtained from it tend to have larger variances. The optimisation scheme (A.2) with any unbi-

ased gradient estimate applied is known as Robbins-Monro (RM) algorithm. A comprehensive

overview of gradient estimation methods can be found in e.g. [6, p. 312 and on] or in [86, p. 231

and on].

Variance reduction

Certainly, keeping the variance of both objective and gradient estimates as small as possible

improves the algorithm convergence. To attain this, the following variance reduction tech-

niques are used: control variates, conditioning, stratified sampling, importance sampling and

antithetic random variables. They all are based on the same idea of utilising some information

about the model to reduce the variance of the estimator. Different techniques use different

information to reduce the variance. Control variates technique redefines the estimator of

146 A. Stochastic optimisation

Eξ f(x, ξ), involving in it some other random variable ζ, observable during simulation, whose

expected value is known exactly. By appropriate coefficient setting one can get reduction of

the variance, provided that f(·) and ζ are related. Conditioning technique is applied when the

procedure of computing the value of f(·) can be split logically in two phases: first, when some

random variable ϕ can be observed, and second, when f(·) is generated from ϕ using some

known conditional distribution. Instead of observing only the final result, one observes ϕ and

directly calculates the conditional expectation. Stratified sampling technique is in some way

complementary to conditioning: here the detailed distribution of the intermediate observation

of ϕ is known, and the simulation needs to be started only to complete the calculation of

f(·). In practice the simulation is run once for each of the values that ϕ can take and its

results, along with the known distribution of ϕ, serve to calculate the estimator of Eξ f(x, ξ).

Importance sampling technique is used in cases when events that are unlikely in the simulation

process contribute significantly the value of Eξ f(x, ξ), as happens e.g. in Monte Carlo integra-

tion of peaky functions. A new sampling density is chosen there that puts more weight to an

area that affects the estimator of Eξ f(x, ξ) strongly. Antithetic random variables technique

uses, in subsequent simulation runs, random variables having the same distributions as ξ, but

being correlated in such way that the estimator variance be reduced. For example, let f(·) be

a monotonic function of ξT = [ξ1 ξ2 . . .], ξi ∼ U(0, 1) — then having a single realisation of ξ

one may run two simulations: one with [ξ1 ξ2 . . .]T and another with [(1 − ξ1) (1 − ξ2) . . .]T

that are negatively correlated, and hope that variance of such pairs of f(·) will be smaller.

A broader description of variance reduction techniques can be found e.g. in [86, p. 221 and

on].

Apart from the above general techniques of variance reduction, for the purpose of compar-

ing different systems there is a widely used practice of utilising the same realisation of random

variable ξ in all iterations of algorithm (A.2), known as common random numbers scheme, and

also referred to as sample path optimisation. Having applied the common random numbers,

the optimisation problem becomes, in fact, a deterministic one, and can be solved by a variety

of methods. However, methods working in this fashion require the number of elements of ξ (or

the number of ξ realisations) to grow as the current solution approximation nears the opti-

mum x?, in order to ensure accuracy. The proof that (under certain assumptions) the solution

x?,dim ξ of the corresponding deterministic problem (based on a sample path of length dim ξ)

tends to x? for growing dim ξ is given in [97]. In most of simulation-optimisation problems,

varying size of ξ can be handled, and has a reasonable interpretation. If, for example, f(·) is

the output from Monte Carlo integration routine, then, in unidimensional case, dim ξ can be

given the interpretation of sample points number that was used for the integration. In one

A.1. Stochastic approximation 147

more example, where f(·) is the performance of a queuing system, dim ξ is the number of

interarrival times, i.e. the number of served customers.

A number of papers can be found dealing with sample path optimisation; for example,

general convergence properties of sample path algorithms with constant dim ξ are discussed

in [97]. Instead, in [101] the plain stochastic approximation scheme is considered, but with

a vector of common random numbers being periodically augmented with new random elements.

This operation improves accuracy of estimates as the algorithm is getting closer to the solution

x?, but it restores randomness to the problem. See also [102] for a study on convergence of

methods working in this fashion, especially in the case when f(·) cannot be estimated otherwise

than by Monte Carlo simulation.

Adaptation of the step size and precision

The question arises how to choose the precision of simulation (e.g. number N of points for

Monte Carlo simulation) and the sequence {an} of step sizes to maintain reasonable compro-

mise between the solution accuracy and the computing effort. The original approach is to use

a fixed simulation precision, and to define {an} a priori

an =
a

n
, (A.10)

where a is some initial step size. It is useful to consider another formula

an =
b

c + n
where c � b > 0 , (A.11)

which prevents an from decreasing rapidly for small n. For (A.10), it is shown [86, p. 290] that

if we consider a more general formula, an = a/nα, then α = 1 will still be the best choice.

The same author proposes an adaptive procedure for choosing {an} based on the observa-

tion that the step size is optimal if the gradients in two consecutive iterations stay orthogonal,

i.e. ĝT (xn, ξ)ĝ(xn+1, ξ) = 0. The proposed routine reduces an by half if the above dot product

is going to be negative. Of course, for the formula to make sense, the gradient estimates have

to be based on the same realisation of ξ, at least for the purpose of comparing ĝ(xn, ξ) and

ĝ(xn+1, ξ).

The postulate for adaptation of an can be found in many papers [119, 102, 122]. The

general suggestion for an to be the result of exact line minimisation along ĝ(xn, ξ) in prac-

tical implementations is usually replaced by the more liberal Armijo rule that in the case of

algorithm (A.2) takes form (iteration number mark n at x’s and a’s is omitted here for clarity)

�
� ĝT (x − aĝ(x, ξ), ξ) · −ĝ(x, ξ)

�
� ≤ −εĝT (x, ξ) · −ĝ(x, ξ) . (A.12)

148 A. Stochastic optimisation

This means that the product of the minimisation direction −ĝ(xn, ξ) and the gradient estimate

at xn+1 does not have to be zero (as in exact minimisation case) but a small (delimited by ε)

part of an analogous product at xn.

The authors cited above combine adaptation of a step size with the increasing simulation

precision. Wardi and Shapiro [119, 102] assume that the size of the random variable (i.e. the

number of random points passed to the simulator) grows to the infinity in a predetermined

way as the algorithm proceeds, and show the convergence in such general case. Next, Yan and

Mukai [122] propose the measures to monitor the progress of performance optimisation and

of the estimation error, and use them to determine when the size of random variable ξ should

be increased. The progress measure is based on the absolute difference |f(xn, ξ) − f(xn+1, ξ)|

of the objective at two consecutive solution estimates for the same realisation of the random

variable, and the error measure is based on the absolute difference |f(xn, ξ) − f(xn, ξ+)| of

objective at the same solution estimate and for the same realisation of ξ, with ξ+ =

�
ξ

ξ̃
� ,

where ξ̃ represents new random elements generated in order to improve accuracy of f(xn, ξ+).

The simulation accuracy and the underlying dimension of random variable used to estimate

the objective and its gradient depend on the kind of simulation. In this section mostly Monte

Carlo simulations were considered. However, in [27] a case is discussed of optimising the service

time in a single server queue with generally independent customer interarrival time (GI/G/1).

It is proved that the next solution estimate xn+1 can be computed as soon as a new customer

arrives, and the algorithm still converges.

The ideas of step size and simulation accuracy adaptation are particularly important when

an approximation of the objective function is made that is more complex than linear. Methods

based on such approximations are discussed on p. 150 in section ‘Other improvements’.

Averaging

A very simple yet powerful modification to the classic SA algorithm that dramatically improves

its convergence, has been invented simultaneously by Polyak and Ruppert. It is supported by

appropriate proofs in [88], and one of numerical examples for its superiority can be found in

[123]. The idea is that, instead of observing a sequence {xn} of solution estimates, one can

observe a sequence {xn} of their averages

xn =
1
n

n�

i=0

xi . (A.13)

A.1. Stochastic approximation 149

In this case, however, to preserve the algorithm’s convergence, one has to replace the formula

(A.10) or (A.11) with

an =
a

nα
, 0 < α < 1 . (A.14)

The idea of averaging has been developed further in [65]. The authors propose that the

averaging does not have to be performed over the whole history. They prefer to calculate

a moving average

xn =
1

wn + 1

n�

i=n−wn

xi (A.15)

and to set the averaging window size wn so that the convergence is preserved. Generally, w

depends on α in (A.14), i.e. w decreases as α → 0 because more frequent oscillations of {xn}

around x? in the final phase of optimisation need less averaging.

Yet another interesting adaptation of the idea of averaging is presented in [31]. It is

proposed to apply the basic averaging scheme (A.13) with the sequence of step sizes defined

a priori but indexed in other way than just with an index of the current iteration. The

indexing variable there is the counter of ‘flips’ of ĝ(·) that happen nearby x?. Therefore, the

algorithm reduces its step size only in the final stage, when a vicinity of the solution has been

reached.

Constraints

SA in its original version is definitely not suited for constrained optimisation problems —

strong assumptions are made in the literature with respect to both the performance index and

the optimisation domain. To ensure global convergence, performance index is required to be

strictly convex, and domain is required to be closed and convex. Usually, it is assumed that

domain is a cartesian product of the intervals of feasible values for each xi, i.e. as it was defined

in (1.5a). The common approach to handle constraints is to project the current estimate of

x? on Dx in each routine iteration. Therefore, (A.2) gets replaced by

xn+1 = πn+1 (xn − anĝ(xn, ξ)) , (A.16)

where πn+1(·) is a constraint preserving operator.

Usually, πn+1(x̃) accepts x̃ if x̃ ∈ Dx, and preserves xn otherwise (an example of such

algorithm is given in [27]). For another type of projection, recall [119] — there, the domain

is defined through a set of functions as in (3.2a), and projection is integrated into the line

minimisation procedure: the step size an must be chosen so that none hI,i(xn − anĝ(xn, ξ))

becomes positive.

150 A. Stochastic optimisation

There is another, mentioned earlier, reason, for which the basic stochastic approximation

scheme is so widely supplemented with the projection feature. It is because SA (A.2) does not

converge if f(·) grows superlinearly. For badly chosen a and the starting point x0, the rate

at which {an} decreases is simply insufficient to overcome the growth of g(·) and {xn} starts

to oscillate around the solution. It is not so rare a case: Fu [44] considers one-dimensional

parameter optimisation problem for a GI/G/1 queue with the projection operator

π(x) =

���� ��� xL if x < xL

xU if x > xU

x otherwise

, (A.17)

where xL and xU are the bounds. Unfortunately, the projection operator (A.17) does not

suffice because in the considered case f(x) → ∞ as x → xL or x → xU. It is then proposed

to solve this difficulty by optimising over a region that is smaller than < xL, xU >. Such

workaround causes another problem: how to reduce the search domain so that x? still remains

inside it?

A solution of this problem would be to change the size of the region on which x is projected

in adaptive way. The proposal of such an adaptive projection was presented in [26]. First,

a sequence {Mn} of increasing radii is constructed, and a counter σ that stores the number

of iterations in which the values xn − anĝ(xn, ξ) fall off the circle C(0, Mσ). In case when the

violation of this circular constraint would happen, xn+1 is reset to some predefined point x+.

It means that the algorithm starts over from x+, but with an smaller and Mσ bigger than

before, as the values of n and σ persist over the algorithm restarts. By choosing {an} and

{Mn} skillfully, good convergence can be obtained. The idea presented in [26] has been further

developed in [4]: the author improves the algorithm behaviour in the case when xn+1 is reset

to x+. He proposes, instead of returning to x+, to project xn − anĝ(xn, ξ) onto a predefined

set. Proceeding in this way, not all progress made in the previous iterations is lost.

Other improvements

Since 1951, the classic SA algorithm has been modified and improved by many authors in other

ways than discussed in the paragraphs above. Perhaps the most often adopted modification

was to assume the step size an not to be a scalar but rather a matrix that would affect not

only the step size but also the direction — like in the well known Newton’s method:

xn+1 = xn − (∇2f(xn))−1(xn)∇f(xn) , (A.18)

where ∇2f(xn) is the Hessian matrix of f(·) at xn. Such improvement was proposed in

[99, 120], and claimed to accelerate algorithm convergence. Actually, the authors have assumed

A.1. Stochastic approximation 151

that ∇f(xn) was observable directly, and formulated the optimisation problem as finding x?

such that ∇f(x?) = 0. Their formula for {xn} merges (A.2), (A.10) and (A.18) as follows:

xn+1 = xn −
a

n
Ĵ−1(xn, ξ)ĝ(xn, ξ) , (A.19)

where Ĵ−1(xn, ξ) is an estimate of ∇2f(xn) calculated using finite differences scheme. The

latter paper [120] proposes two more additions to (A.19). First, the construction of Ĵ−1(·) is

based also on the values of Ĵ−1(·) in the previous steps. Second, the identity matrix is used

in steps where the Hessian matrix would be singular.

The paper [87], mentioned already, proposes an entirely different algorithm in which the

quadratic problem (cf. p. 67) is solved in each step to find xn+1. That quadratic problem

is deprived of any randomness, because all the necessary computations in a single step are

performed for the same realisation of ξ. The proposed approach is to find the subgradients

%1, %2, . . . of f(·) at xn, thus constructing a cutting-plane approximation of the performance

function. The problem passed to a QP solver is to minimise this approximation, which is

additionally regularised so that xn+1 lies not too far from xn. Therefore the routine is as

follows:

xn+1 = xn + d d, v = arg min � v +
||dn||2

cn
, v ≥ %T

i d � , (A.20)

where cn is the regularisation coefficient. QP also allows to support any other explicit equality

or inequality constraint that has been imposed on the original problem externally. Application

of subdifferential broadens the suite of problems supportable by the algorithm.

A significant improvement of optimisation efficiency can be achieved not only through

the algorithm amendments, but also by simplifying the simulator itself. Let us return once

again to [87] for an example. The authors consider discrete tandem production lines, i.e.

those producing separate workpieces. However, they use simulation routines suitable for the

continuous products like fluids. By doing so, they reduce the simulation time by an order of

magnitude at the cost of 4% error in f(·) relative to the discrete simulation case.

While certain researchers’ goal is to reduce the variance, others deliberately make the op-

timisation routines wander for some time in Dx in search for the global, not local, solution.

Such an algorithm is presented in [46]; there every new solution estimate is perturbed with

multidimensional independent Gaussian random variable. The variance of this variable di-

minishes as the algorithm proceeds, making it less and less able to leave the attraction area

of a local minimum. This algorithm resembles the simulated annealing scheme described on

p. 73.

152 A. Stochastic optimisation

A.2 Response surface methodology and other approxi-

mation techniques

This section presents collectively selected techniques for performance index approximation.

Although presented in context of stochastic optimisation, performance index approximation

may serve two purposes. The first one is to get rid of indeterminism altogether by replacing

the original performance index in optimisation problem with its deterministic approximation,

constructed through linear regression procedure. The second one, arguably not supposed to

be mentioned in here since it concerns deterministic optimisation, is to mitigate the burden of

costly model solving by using a metamodel to approximate performance index from relatively

few genuine model results.

Response surface methodology is the approximation technique used in stochastic opti-

misation to attain the first purpose. Unlike in SA, classic RSM does not require perpetual

interaction between the optimisation routine and the simulator. The optimisation is performed

in three steps:

Step 1: Simulation is invoked at for a number of points from the domain. Those points

can be chosen at random or using some predefined scheme. The results of simulations

are passed to Step 2.

Step 2: The unknown function Eξ f(x, ξ) is approximated by some known deterministic

function f̃(x), fit by regression, using the values calculated in Step 1.

Step 3: The minimum of f̃(·) is sought by some deterministic optimisation routine.

In most practical applications, steps 1–3 are executed cyclically. In subsequent executions,

as the solution estimate approaches x?, functions f̃(·) of more complex structure are being

fitted (e.g. first linear, then quadratic, finally cubic). Also, the region from which the samples

of f(·) are drawn, is being made smaller and smaller. According to [24], the response surface

methods perform in general better than their stochastic approximation alternatives. In order

to be effective, RSM — similarly to SA — requires considerable knowledge of the nature of

the problem being solved. In SA, it was the gradient estimation that required deep insight

into the model; here what comes from extra knowledge is the proper type of response surface

approximation function.

RSM requires relatively few samples to construct accurate approximations of performance

functions provided that those functions themselves are not very complicated. For rapidly

changing performance RSM, regardless of the number of samples it is based on, does not suffice.

This is quite a frequent case when deterministic optimisation problems are concerned. In

A.2. Response surface methodology and other approximation techniques 153

such situations more elaborate approximation techniques are employed, capable of predicting

behaviour of a quickly varying performance index in between sample points. Let us present

three of them: artificial neural networks, Bayesian regression and Krigging.

Artificial neural networks, i.e. mathematical models inspired by structure and workings of

brain, have been applied in numerous domains, and often over-optimistically. Their success in

response surface approximation is, however, well-established. Once properly designed (w.r.t.

the structure and the number of neurons), a neural network is able to achieve good compro-

mise between prediction accuracy and generalisation properties — the features that remain

somewhat contradictory. Potential pitfalls of neural networks are the phenomena of underfit-

ting and overfitting, related to the number of neurons in the hidden layer, and consisting in

insufficient or too literal utilisation of the training data by the network.

In Bayesian regression technique, the performance function is approximated at each point

by random variable with Gaussian distribution rather than by a deterministic value. Such,

seemingly pointless, introduction of indeterminism to the originally deterministic problem

is a precious improvement since it gives information not only about the function value at

point x̃ but also some measure of approximation credibility there. Therefore, the introduced

indeterminism stands for the uncertainty about performance index behaviour in areas between

spots where samples were taken, and not for any inherent randomness present in the modelled

system [30]. The distributions provided by Bayesian regression technique are the result of some

statistics performed over all samples (e.g. on covariance calculations). The potential problem

with Bayesian regression technique, as signalled by the literature, is excessive numerics, now

overcome by massive fine-grained parallel computing.

Krigging (named probably after a Dutch mining geologist) is an interpolation technique

locating itself in mid-way between RSM and Bayesian regression. Similarly to the latter one,

local statistics are collected from the samples; namely, autocovariance is calculated. Next,

the interpolation is performed by a moving weighted average process, where the weights are

adjusted using the autocovariance so that expected squared estimation error is kept at its

minimum. Krigging, initially developed for 2-D and 3-D spaces, has been extended to mul-

tidimensional version, and there is evidence of its proper working. However, for practical

reasons, some standard formula is picked to describe the autocovariance instead of keeping

it in its original form. Consequently, the fine theoretic properties of the method (i.e. the

minimum estimation error) get spoiled.

154 A. Stochastic optimisation

A.3 Direct search methods

As it was already mentioned, every deterministic optimisation routine can be applied to solve

stochastic optimisation problem provided that appropriately accurate estimate of f(·) is avail-

able. The direct search algorithms presented in this section are, in major part, adaptations

of well-known algorithms presented through Section 3.2. The common problem in their adap-

tation is when actually resampling of f(·) must take place to ensure the convergence that is

usually severely handicapped by fluctuations of f(·).

Simplex search

The ancestor of Nelder-Mead direct search routine (cf. p. 71), the classic downhill simplex

search was probably the first algorithm adapted for stochastic optimisation problems. The

adaptation was described in [108]; the routine used by the authors was still devoid of expansion

and contraction operations — the simplex moved across the domain being transformed only

by subsequent reflections. When the proximity of x? was reached then the simplex started

to rotate around the solution, which was the sign to stop the procedure. Without any im-

provements that original simplex algorithm would probably get anchored far from x? by an

occasional unusually good simulation result. To avoid that, the authors propose to repeat

simulations — but only for ‘stale’ simplex vertices — with purpose to force the algorithm

forward.

Similarly for the regular Nelder-Mead procedure: when it is employed with no improve-

ments for stochastic problems, it terminates prematurely due to far too frequent contractions

it happens to make. This drawback is addressed in [15]. The authors, after a brief review

of the former algorithm amendments, point out the cases where resampling of f(·) solves the

problem. They additionally advise making the contraction operation less strong. Yet another

revised simplex procedure is proposed in [55], and numerical examples are provided showing

its superior performance relative to the algorithm presented in [15]. The postulated changes

include geometrical decrease of contraction coefficients and linear growth of expansion coef-

ficients, as optimisation proceeds. Also, procedure restarts with preserving the actual best

solution, are postulated.

Simplex search routines, like all routines where the selection of a trial point is driven by

ranking of points in the pool, work well if the fluctuations of f(·) due to random factors are

so small that they do not affect the ranking of the pool points. It is usually the case in the

preliminary stage of optimisation. However, when approaching x?, the ordering of points in

Xn becomes distorted by the randomness of ξ, and algorithms start oscillating around the

A.3. Direct search methods 155

solution. More accurate estimates of the performance index are needed at that point in order

to make the optimisation progress any further.

Simulated annealing

Adaptations of simulated annealing algorithm (cf. p. 73) to stochastic problems use an estimate

of the objective function value (mostly it is the mean of an increasing number of observations

of f(·) at some trial point x̃). Moreover, they are greedy, i.e. they preserve the best solution

estimate found in the course of the algorithm run. Convergence properties of so adapted

algorithms are discussed by Gelfand and Mitter [45]. Next, Fox and Heine [42] postulate some

amendments that prevent simulated annealing from staying too long without a move, thus

improving its efficiency.

Adaptation of the number of observations used to estimate the objective is proposed in

[23]. It is postulated that the number of observations must be increased only if the difference

f(x̃n+1, ξ) − f(xn, ξ) is small w.r.t. the current confidence intervals for f(x̃n+1, ξ) and for

f(xn, ξ). Moreover, if the replication of observations of f(·) does not allow to make reliable

comparison, then the temperature θ is reduced and another trial point is chosen. Such algo-

rithm has been successfully applied for an exemplary problem of buffer sizes optimisation in

transport systems. A similar algorithm is also described in [14], and applied for steelworks

design parameters (finding optimal number of cranes, furnaces etc.) problem. In both cases

the search domain is discrete, and a proper neighbourhood has to be constructed so that the

algorithm is able to penetrate the whole search space.

Generally speaking, simulated annealing can be used in stochastic optimisation, both con-

tinuous and discrete, provided that the variance of the estimator of the objective function

decreases to zero for growing number of observations. Also, proper definition of the neigh-

bourhood is an important issue, sometimes requiring as much knowledge of the system as when

creating appropriate distributions for gradient estimation in SA, or as when determining the

response surface type.

Other algorithms

An algorithm quite similar to simulated annealing and frequently cited has been presented in

[121]. Instead of dealing with the randomness of the objective function by averaging over an

increasing number of samples, the authors propose to utilise the random character of the ob-

jective for the purpose of searching for the global optimum. In fact, the needed modifications

of the basic simulated annealing scheme are few: the main is that instead of looking for the

156 A. Stochastic optimisation

minimum of Eξ f(x, ξ) one looks for such x that maximises the probability of f(x, ξ) ≤ ϑ.

Here, ϑ is a random variable uniformly distributed over the interval < fL, fU > of approxi-

mate values that f(·) can take. In practical realisation of this algorithm the value f(x̃n+1, ξ)

is measured Mn+1 times at trial point against a sort of a ‘stochastic ruler’, i.e. against ϑ. If

in all measurements the test f(x̃n+1, ξ) ≤ ϑ is passed, then the candidate x̃ is accepted. Of

course, for Mn growing with the progress of optimisation, the tendency to accept worse can-

didate points decreases, analogously to the classic simulated annealing scheme. The proposed

algorithm converges under relatively mild conditions, and is simple to implement.

Another, still more general and more global algorithm was proposed in [5]. This routine

is also based on the simulated annealing scheme (or rather, on the random walk scheme). It

operates on the domain being a set of a finite number of points; for each of them the probability

of being chosen as the next trial point x̃ is equal. Therefore, no cooling scheme exists, but

for each point from domain the number of times it was visited, is recorded. As the algorithm

proceeds, the statistics are collected, and the point visited most often is considered to be the

solution. In this routine the candidate x̃ is allowed to become xn+1 only if f(x̃, ξ) < f(xn, ξ).

The convergence of this algorithm to the global optimum is demonstrated.

Quite often the engineers and researchers, inspired by widely recognised classic algorithms,

develop their own routines, often tailored to the specifics of a particular problem. Those rou-

tines can combine the techniques existent since long time in separate algorithms into one piece

of software. An example of such approach can be found in [110], where the problem of opti-

mal network design is addressed. The author employs common random numbers scheme (to

reduce the estimator variance), adaptation of sample size (to increase accuracy), perturbation

analysis and, finally, the tabu search (cf. p. 75) paradigm, obtaining a method that performs

very well, at least for the considered class of problems.

There are many other well known and widely applied routines for stochastic optimisation

problems: tabu search, evolutionary strategies (cf. p. 76), importance sampling methods. For

a short discussion on them and for further references, see [3, 24, 109].

Appendix B

Parallelisation tools and techniques

The postulate contained in Thesis 2d to speed up lengthy by their nature calculations seems

quite trivial. However, one should consider here what actually can be subject to parallelisation

and how this parallelisation can be effectuated for simulation-optimisation problems. Provided

the two-module system structure, as in Fig. 1.1, computation speed-up can be achieved by

parallelisation of simulation process and/or by parallelisation of optimisation process. Which

operations should be parallelised depends on the nature of simulation and on the type of

computing environment available. It must be emphasised that if massive parallel architecture

computing power (represented by e.g. Single Instruction Multiple Data — SIMD) is at hand,

it ought to be definitely used by the simulator — if only the simulation nature corresponds

to that architecture (e.g. in FEM). Otherwise that architecture advantages, if left over for

the optimisation routine, will bring only a marginal performance improvement, considered the

mere ratio of effort needed for simulation and for optimisation. (They may be eventually used

for matrix operations and alike, but the computing effort made by the optimisation routine

still remains a minor part of the simulation effort.) If the simulation nature is so that such fine-

grained parallelisation is not possible, the allocation of parallelisation techniques to simulator

or to optimiser is more flexible.

The above suggestions can be opposed by the argument that the simulator is often a closed

piece of software, and no intervention inside it is possible — especially affecting the way

parallelism is used. This is true in many cases — but equally frequently the simulator is

configurable to use SIMD architecture, or available with its source code, and it is its intricacies

that scare off and make it ‘closed’. Sometimes it is enough to recompile the simulator to

make use of the architecture; there exist already compilers [56] capable of automated loop

parallelisation with SIMD instructions. Alternatively, OpenMP [79, 117] mechanism can be

used for coarser-grain parallelisation. OpenMP offers a set of parallelisation directives that

may be inserted into an existing source code in spots that can be easily investigated with

158 B. Parallelisation tools and techniques

a software profiler. However, OpenMP spawns multiple threads for parallel execution instead

of using SIMD instructions.

In cases when no parallelisation inside the simulator is possible, one has to consider the

simulation as an atomic operation. Consequently, the only parallelisation one can think about

is the coarse-grain optimisation routine parallelisation. Such parallelisation, unlike the fine-

grain one, cannot be carried out automatically. Moreover, provided diversity of optimisation

routines there is no single parallelisation methodology — each routine requires an approach of

its own. Selected optimisation parallelisation approaches are presented below in Section B.1.

Third-party commercial simulators, irrespectively of their SIMD support, not only make

the interference into the source code impossible but, moreover, introduce mechanisms (e.g.

hardware keys, fixed directory structure, fixed communication port numbers) allowing only

a single simulator instance to be run on a machine. This, apart from non-trivial coarse-grain

optimisation parallelisation, leads to the need of distributing simulation over a number of

machines. Techniques of such distribution are presented in Section B.2

B.1 Parallelisation of optimisation routines

According to the software engineer’s involvement, three levels of routine parallelisation can be

distinguished [62]:

Code level — simple loop spreading or data spreading in the original routine, performed

either manually or through some automation tool;

Method level — more profound original routine modifications that take into account

specifics of the parallel environment available;

Problem level — complete reconsideration of the original routine leading to profound

changes or routine redesign, with execution in parallel as intrinsic feature of so con-

structed routine.

Some of techniques applied at code level have been already mentioned while speaking of

simulation parallelisation (OpenMP, SIMD compilers). Some other, working in similar fashion,

Fortran tools are worth to be recommended here, especially that much of existent optimisation

software is written in that language. Those tools are Parallel Support Library (PSL), a thread

library [117], and High Performance Fortran (HPF), a tool for targeting SIMD architectures

by using parallelisation directives [53, 118]. As regards C and Java languages, code-level

parallelisation is commonly achieved through spawning a multitude of threads.

B.1. Parallelisation of optimisation routines 159

Code level parallelisation, whenever available, is commonly used in optimisation routines

for matrix operations or similar tasks, and therefore can be placed inside all gradient methods.

However, as it was mentioned, it does not lead to any significant speed-up in optimisation

until it is performance index evaluation calls that get invoked simultaneously. The case when

code level parallelisation leads to a substantial speed-up is performing first or second order

derivatives estimation, as in (A.5).

Parallelisation at method level is applied practically only for direct search non-gradient

routines. Explicit sequential nature of SLP, SQP or GRG routines effectively prevents creation

of their concurrent versions, at least to the author’s knowing. The similar is observed in

the case of conjugate directions routines (e.g. the Powell method), although the possibility

of their parallelisation is still an open question [105]. Concurrent implementations of non-

gradient direct search routines abound, both synchronous and asynchronous. In methods like

CRS and COMPLEX the parallelisation is customarily achieved by simultaneously reflecting

more than one point in the pool (cf. Section 5.1 for two concurrent CRS variants, see [17] for

a description of COMPLEX with the reflecting scheme similar to the one in CRS in waveguide

problem). Parallelisation of EA seems so straightforward that it should possibly be classified

to code level, were it not for asynchronous implementations that require more attention and

programming effort.

Parallelisation at problem level results in deep changes of the original algorithm, which

are the effect of tight adaptation of the algorithm to a problem of well known and particular

structure. The process starts usually with problem decomposition into subproblems, and the

final algorithm structure (computing threads, synchronisation) corresponds to that decom-

posed structure. An exemplary problem requiring problem level parallelisation, given on p.

12, is the direct-method optimisation of a performance index of special structure.

In most simulation-optimisation problems with the simulator assumed to be a black box

such far-reaching assumptions about f(·) and simulation partitioning are impossible. There-

fore, the steam goes to construct routines explicitly exploiting the parallelism, and openly

attacking the problem with sheer force. For example, Torczon [32] develops a series of deeply

changed Nelder-Mead procedures where, instead of one point being reflected, the whole sim-

plex is subject to reflection, once or more times. In the latter case, a whole lattice of trial

points is generated, being the result of all anticipated reflections, expansions and contractions,

and f(·) is evaluated concurrently for all of those points. Yet another idea [51], called parallel

pattern search, consists in evaluating f(·) at several points in the neighbourhood of xk, and

accepting the best of them as xk+1. Those points, unlike in the case of simulated annealing,

are chosen deterministically.

160 B. Parallelisation tools and techniques

B.2 Distributed processing

Closeness of the simulation module, relatively small effort consumption by the optimisation

routine, flat and relatively small data structures passed to and from the simulator — all these

factors determine the typical architecture of a distributed simulation-optimisation system.

Simulators are considered to be servers, while the optimisation routine — run on a single

machine as there is no reason to distribute the optimisation code — is the client. Simplicity of

data constructs (both simulation input and output are just vectors of floating-point numbers)

passed between client and servers make data marshalling easy. The passed data are few and

their transmission times can be neglected as compared with average simulation time. It can

be said that establishing communication using system sockets is enough.

Generally, the above is true. However, utilisation of one of several available tools facilitating

distributing computations is advisable for at least three reasons. The first is data portability.

It may happen to run optimisation in a heterogenous network with, say, both big-endian and

little-endian machines. Manual controlling of numbers encoding is error-prone in such case.

Similarly, programming the socket interface directly is considered laborious and clumsy, and

therefore is avoided — this is the second reason. The third reason is that some tools offer

programming interfaces well fitting the language simulator or optimisation modules are written

in, thus saving a programmer the data translation job.

Six candidate tools for distributed computing have been selected to be presented here.

They are:

Remote Procedure Call (RPC). A well-established mechanism that lets invoke a routine

provided by a module residing on a remote machine. It comes with tools creating client-

side proxies and server-side skeletons. Its standard for external representation of data

structures, XDR, has been adopted by many later tools.

Parallel Virtual Machine (PVM). Message-passing oriented communication system mak-

ing possible for processes on different machines to exchange messages. Uses XDR for

data structures serialisation.

Message Passing Interface (MPI). Similar to PVM but focused on emulation of a parallel

virtual machine with SIMD architecture.

Common Object Request Broker Architecture (CORBA). Can be presented as RPC that

has upgraded to object-oriented level. CORBA’s strength are many auxiliary services

e.g. for message passing, synchronisation etc.

B.2. Distributed processing 161

Distributed Component Object Model (DCOM). Microsoft proprietary alternative for

CORBA, an object-oriented inter-process distributed communication.

Java RMI . Java native mechanism for invocation of methods provided by objects resi-

dent on another Java virtual machine. Similar in operation to CORBA and DCOM.

feature\tool RPC PVM MPI CORBA DCOM RMI

portability portable portable portable† portable portable‡ portable

(widely

ported)

primary call message message call call call

communication

model∗

interfaced C C, C, C, C++, C++, Java, Java

languages Fortran Fortran Java, Visual Basic

Smalltalk

difficulty very simple simple difficult difficult very

of use simple simple

Table B.1: Classification of selected programming tools by their possession of attributes that are relevant

in context of simulation-optimisation distributed implementation.

† Within a particular implementation. ‡ Only among Microsoft solutions. ∗ The interprocess communication

model promoted and particularly addressed by the tool. (Using the other communication model is either supported

by that tool directly, or can be worked around.)

The detailed description of the above tools (except for DCOM) and of their applicability for

distributed computation can be found in [118] and in [59], the latter being the author’s concise

review of object-oriented tools, enriched with examples and performance tests.

Features of those tools that are interesting from our point of view are summarised in

Table B.1. As a conclusion, it can be said that the choice of a particular tool will probably be

most dependent on that tool interfacing abilities. As an example, one can imagine a simulator

required to be run under MS-Windows on one side (e.g. QW-3D), and some optimisation

routine required to be run under UNIX (e.g. OptdesX). In such case RPC, PVM, MPI and

162 B. Parallelisation tools and techniques

CORBA would be considered. However, in the next stage of selection MPI and CORBA would

probably get excluded for their unnecessary complexity.

The issue of load balancing in order to yield as much performance as possible from a given

distributed computing resources can be approached in two ways. The first approach is to

write a load manager which, being simultaneously the proxy for simulation, is to decide where

the currently requested simulation is to be run. Such solution leaves much control over the

whole system to the user and requires no modifications of the existing simulation servers —

but it implies much programming work for the load manager creation. The second approach

makes use of clustering technique. A cluster, or a group of computers appearing to user and to

processes as a single system, imitates a powerful parallel machine with all the implications: no

extra tools for client-server data transmission are required, and the simulation-optimisation

structure can be a multithreaded optimisation module spawning simulation modules locally.

Next, those simulators can be transferred in the middle of their run to less loaded cluster

machines. This is done at operation system kernel level and passes unnoticed. Similarly to

the user-defined load balancing, clustering does not require any changes of the simulator —

but it constraints substantially inter-process communication and use of system resources by

the migrated processes. It also assumes cluster machines homogeneity w.r.t. the operating

system. Exemplary cluster solutions are MOSIX [76] for Linux and proprietary Microsoft

products [52].

Bibliography

[1] M. M. Ali and A. Törn. Population set based global optimization algorithms: Some

modifications and numerical studies. Computers & Operations Research, 2003. Accepted

for print. Available from http://www.ima.umn.edu/preprints/feb2003/1907.pdf.

[2] AMPL Modeling Language for Mathematical Programming (web site). Available at

http://www.ampl.com.

[3] S. Andradóttir. A review of simulation optimization techniques. In D. J. Medeiros, E. F.

Watson, J. S. Carson, and M. S. Manivannan, editors, Proceedings of the 1998 Winter

Simulation Conference, pages 151–158.

[4] S. Andradóttir. A stochastic approximation with varying bounds. Operations Research,

43(6):1037–1048, November–December 1995.

[5] S. Andradóttir. A global search method for discrete stochastic optimization. SIAM J.

Optimization, 6(2):513–530, May 1996.

[6] S. Andradóttir. Simulation optimization. In J. Banks, editor, Handbook of Simulation:

Principles, Methodology, Advances, Applications, and Practice. John Wiley & Sons, Inc.,

1998.

[7] J. Arabas. Wykłady z algorytmów ewolucyjnych. Wydawnictwa Naukowo-Techniczne,

2001.

[8] J. Arabas and P. Miazga. Computer aided design of a layout of planar circuits by

means of evolutionary algorithms. Journal of Computing and Information Technology,

7(1):61–76, 1999.

[9] P. Arabas, M. Kamola, and K. Malinowski. IP services market: Modelling, research and

reality. In W. Burakowski, B. Koch, and A. Bęben, editors, Architectures for Quality of

Service in the Internet, pages 76–87. Springer-Verlag, 2003.

164 Bibliography

[10] P. Arabas, M. Kamola, K. Malinowski, and M. Małowidzki. Pricing for IP network and

services. Information Knowledge Systems Management, 3(2-4):153–171, 2002.

[11] A. C. Atkinson and A. N. Donev. Optimum experimental design. Clarendon Press,

Oxford, 1992.

[12] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computa-

tion. Institute of Physics Publishing and Oxford University Press, 1997.

[13] M. H. Bakr, J. W. Bandler, N. Georgieva, and K Madsen. A hybrid aggressive space

mapping algorithm for EM optimization. IEEE Transactions on Microwave Theory and

Techniques, MTT-47:2440–2449, 1999.

[14] M. R. P. Barretto, L. Chwif, T. Eldabi, and R. J. Paul. Simulation optimization with

the linear move and exchange move optimization algorithm. In P. A. Farrington, H. B.

Nembhard, D. T. Sturrock, and G. W. Evans, editors, Proceedings of the 1999 Winter

Simulation Conference, pages 806–811.

[15] R. R. Barton and J. S. Ivey, Jr. Modifications of the Nelder-Mead simplex method for

stochastic simulation response optimization. In B. L. Nelson, W. D. Kelton, and G. M.

Clark, editors, Proceedings of the 1991 Winter Simulation Conference, pages 945–953.

[16] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming. Theory and

Algorithms. John Wiley & Sons, Inc., 1993.

[17] W. E. Biles and J. P. Kleijnen. A Java-based simulation manager for optimization

and Response Surface Methodology in multiple-response parallel simulation. In P. A.

Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, editors, Proceedings of

the 1999 Winter Simulation Conference, pages 513–517.

[18] J. P. Błaszczyk. Obiektowa biblioteka do rozwiązywania zadań sterowania optymalnego

z czasem dyskretnym. Master’s thesis, Warsaw University of Technology, 2000.

[19] J. Boesel, R. O. Bowden, Jr., F. Glover, J. P. Kelly, and R. Westwig. Future of simulation

optimization. In B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, editors,

Proceedings of the 2001 Winter Simulation Conference, pages 1466–1469.

[20] M. J. Box. A new method of constrained optimization and a comparison with other

methods. The Computer Journal, 8(1):42–52, April 1965.

Bibliography 165

[21] T. Brady and B. McGarvey. Heuristic optimization using computer simulations: A study

of staffing levels in a pharmaceutical manufacturing laboratory. In D. J. Medeiros, E. F.

Watson, J. S. Carson, and M. S. Manivannan, editors, Proceedings of the 1998 Winter

Simulation Conference, pages 1423–1428.

[22] A. Brooke, D. Kendrick, and A. Meeraus. Gams: A User’s Guide, Release 2.25. Boyd

& Fraser Publishing Company, Danvers, 1992.

[23] A. A. Bulgak and J. L. Sanders. Integrating a modified simulated annealing algorithm

with the simulation of a manufacturing system to optimize buffer sizes in automatic

assembly systems. In M. Abrams, P. Haigh, and J. Comfort, editors, Proceedings of the

1988 Winter Simulation Conference, pages 684–690.

[24] Y. Carson and A. Maria. Simulation optimization: Methods and applications. In S. An-

dradóttir, K. J. Healy, and B. L. Nelson, editors, Proceedings of the 1997 Winter Simu-

lation Conference, pages 118–126.

[25] M. Celuch-Marcysiak, W. Gwarek, P. Miazga, M. Sypniewski, and A. Więckowski. Au-

tomatic design of high frequency structures using a 3-D FD TD simulator in an opti-

misation loop. In XIII International Conference on Microwaves, Radar and Wireless

Communications MIKON-2000, pages 271–274, Wrocław, May 2000.

[26] H. Chen and Y. Zhu. Stochastic approximation procedures with randomly varying

truncations. Scientia Sinica, 29(9):914–926, September 1986.

[27] E. K. P. Chong and P. J. Ramadge. Optimization of queues using an infinitesimal

perturbation analysis-based stochastic algorithm with general update times. SIAM J.

Control and Optimization, 31(3):698–732, May 1993.

[28] Software architecture and functional specifications (Pricing Module). Project deliverable

D3.1.1, QOSIPS consortium, 2001.

[29] Research report on how pricing model, learning and optimisation are to be implemented

to satisfy requirements. Project deliverable D3.2.1, QOSIPS consortium, 2001.

[30] D. D. Daberkow. A Formulation of Metamodel Implementation Processes for Complex

Systems Design. PhD thesis, Georgia Institute of Technology, 2002. Available from

http://www.asdl.gatech.edu/staff/pdf/daberkow_thesis.pdf.

[31] B. Delyon and A. Juditsky. Accelerated stochastic approximation. SIAM J. Optimiza-

tion, 3(4):868–881, November 1993.

166 Bibliography

[32] J. E. Dennis and V. Torczon. Direct search methods on parallel machines. SIAM J.

Optimization, 1(4):448–474, November 1991.

[33] P. D. Domański, J. Arabas, K. Świrski, and M. Wegnerowska. Economic load dispatch

for combined cycle cogeneration facility: Comparison of different approaches. In Inter-

national Conference on Automation, Control and Information Technology (ACIT’2002),

pages 130–135, Novosibirsk.

[34] Vanderplaats Research & Development, Inc. (web site). Available at http://www.

vrand.com.

[35] A. S. Drud. GAMS/CONOPT. In GAMS - The Solver Manuals. GAMS Development

Corporation, Washington, 1993.

[36] T. F. Edgar and D. M. Himmelblau. Optimization of Chemical Process. McGraw-Hill,

1988.

[37] J. F. Faccenda and R. F. Tenga. A combined simulation/optimization approach to

process plant design. In J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson,

editors, Proceedings of the 1992 Winter Simulation Conference, pages 1256–1261.

[38] K. Fall and K. Varadhan. The ns Manual. UC Berkeley, 2003. Available from http:

//www.isi.edu/nsnam/ns/doc/ns_doc.pdf.

[39] M. K. H. Fan, A. L. Tits, J. Zhou, L.-S. Wang, and J. Koninckx. CONSOLE User’s

Manual. Technical Research Report TR 1987-212, Systems Research Center, Univ. of

Maryland, 1987.

[40] W. Findeisen, F. N. Bailey, M. Brdyś, K. Malinowski, P. Tatjewski, and A. Woźniak.

Control and Coordination in Hierarchical Systems. John Wiley & Sons, Inc., 1980.

[41] W. Findeisen, J. Szymanowski, and A. Wierzbicki. Teoria i metody obliczeniowe opty-

malizacji. Państwowe Wydawnictwo Naukowe, 1980. In Polish.

[42] B. L. Fox and G. W. Heine. Probabilistic search with overrides. The Annals of Applied

Probability, 5(4):1087–1094, 1995.

[43] M. C. Fu. A tutorial review of techniques for simulation optimization. In J. D. Tew,

S. Manivannan, D. A. Sadowski, and A. F. Seila, editors, Proceedings of the 1994 Winter

Simulation Conference, pages 149–156.

Bibliography 167

[44] M. C. Fu. Convergence of a stochastic approximation algorithm for the G1/G/1 queue

using infinitesimal perturbation analysis. Journal of Optimization Theory and Applica-

tions, 65(1):149–160, April 1990.

[45] S. B. Gelfand and S. K. Mitter. Simulated annealing with noisy or imprecise energy

measurements. Journal of Optimization Theory and Applications, 62(1):49–62, July

1989.

[46] S. B. Gelfand and S. K. Mitter. Recursive stochastic algorithms for global optimization

in Rd. SIAM J. Control and Optimization, 29(5):999–1018, September 1991.

[47] F. Glover, J. P. Kelly, and M. Laguna. New advances and applications of combining

simulation and optimization. In J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J.

Swain, editors, Proceedings of the 1996 Winter Simulation Conference, pages 144–152.

[48] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[49] W. Gwarek and P. Miazga. Improved design of coaxial impedance transformers using

electromagnetic 2-D solver in an optimization loop. In XI International Conference

on Microwaves, Radar and Wireless Communications MIKON-1996, pages 433–437,

Warszawa, May 1996.

[50] U. Hammel. Chapter F.1.8: Simulation models. In T. Bäck, D. B. Fogel, and

Z. Michalewicz, editors, Handbook of Evolutionary Computation. Institute of Physics

Publishing, Bristol, 1997.

[51] P. D. Hough and T. G. Kolda. Asynchronous parallel pattern search for nonlinear

optimization. SIAM J. Scientific Computing, 23(1):134–156, June 2001.

[52] High Performance Computing for Windows Server 2003. Web page available from http:

//www.microsoft.com/windowsserver2003/hpc.

[53] HPF: The High Performance Fortran home page (web site). Available at http://www.

crpc.rice.edu/HPFF.

[54] J. Hromkovič. Algorithmics for Hard Problems. Springer-Verlag, 2001.

[55] D. G. Humphrey and J. R. Wilson. A revised simplex search procedure for stochastic

simulation response-surface optimization. In D. J. Medeiros, E. F. Watson, J. S. Carson,

and M. S. Manivannan, editors, Proceedings of the 1998 Winter Simulation Conference,

pages 751–759.

168 Bibliography

[56] Optimizing applications with the Intel
�

C++ and Fortran compilers for Windows and

Linux. Product leaflet, Intel Corporation.

[57] S. H. Jacobson. Convergence results for harmonic gradient estimators. ORSA Journal

on Computing, 6:381–397, 1994.

[58] Z. Jankowski, Ł. Kurpisz, L. Laskowski, J. Łajkowski, A. Miller, W. Sikora, J. Portacha,

and M. Zgorzelski. Model matematyczny pracy turbozespołu w zmiennych warunkach

— na przykładzie bloku 200 MW. Biuletyn Informacyjny Instytutu Techniki Cieplnej,

33:3–36, 1972. In Polish (English abstract available).

[59] M. Kamola. Rozdział 7: Narzędzia do tworzenia obiektowych programów rozproszonych

w środowiskach sieciowych. In A. Karbowski and E. Niewiadomska-Szynkiewicz, editors,

Obliczenia równoległe i rozproszone. Oficyna Wydawnicza Politechniki Warszawskiej,

Warszawa, 2001.

[60] M. Kamola, P. Arabas, and K. Malinowski. Uncertainty in modelling and its impact

on optimisation domain; network services pricing. In Proceedings of Summer Computer

Simulation Conference (SCSC) 2003, pages 490–496, Montreal.

[61] M. Kamola and K. Malinowski. Simulator-optimizer approach to planning of plant

operation; ill-defined simulator case. In P. P. Groumpos and A. P. Tzes, editors, A

Proceedings volume from the IFAC Symposium, Patras Greece, 12-14 July 2000.

[62] A. Karbowski, K. Malinowski, and E. Niewiadomska-Szynkiewicz. Rozdział 8: Algo-

rytmy synchroniczne. In A. Karbowski and E. Niewiadomska-Szynkiewicz, editors,

Obliczenia równoległe i rozproszone. Oficyna Wydawnicza Politechniki Warszawskiej,

Warszawa, 2001.

[63] N. L. Kleinman, S. D. Hill, and V. A. Ilenda. Simulation optimization of air traffic delay

cost. In D. J. Medeiros, E. F. Watson, J. S. Carson, and M. S. Manivannan, editors,

Proceedings of the 1998 Winter Simulation Conference, pages 1177–1181.

[64] P. Kozakowski. Analiza czasowa pasywnych układów mikrofalowych o dużej dobroci. PhD

thesis, Politechnika Gdańska, Gdańsk, 2002. Available from http://www.pg.gda.pl/

mwave-mim/THESES/piotek_phd.pdf.

[65] H. J. Kushner and J. Yang. Stochastic approximation with averaging of the iterates:

Optimal asymptotic rate of convergence for general processes. SIAM J. Control and

Optimization, 31(4):1045–1062, July 1993.

Bibliography 169

[66] D. A. Malinowska. Steady-state optimisation of high pressure gas networks. Master’s

thesis, Warsaw University of Technology, March 1996.

[67] K. Malinowski. Optimization network flow control and price coordination with feedback:

proposal of a new distributed algorithm. Computer Communications, 25:1028–1036,

2002.

[68] The MathWorks, Inc. Optimization Toolbox User’s Guide. Available from http://www.

mathworks.com/access/helpdesk/help/pdf_doc/optim/optim_tb.pdf.

[69] C. C. Meewella and D. Q. Mayne. Efficient domain partitioning algorithms for global

optimization of rational and Lipschitz continuous functions. Journal of Optimization

Theory and Applications, 61(2):247–270, May 1989.

[70] S. Meinzer, A. Quinte, M. Gorges-Schleuter, W. Jakob, and W. Süß. Simulation and

design optimization of microsystem based on standard simulators and adaptive search

techniques. In Proceedings of European Design Automation Conference with EURO-

VHDL’96 and exhibition on European Design Automation, pages 322–327, Geneva, 1996.

[71] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state

calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1092,

1953.

[72] P. Miazga. Optimization of the microstrip to waveguide transition. Application note,

Institute of Radioelectronics, Warszawa, 2001.

[73] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-

Verlag, 1996.

[74] A. Miller and J. Lewandowski. Wyznaczanie charakterystyk układów z turbinami

cieplnymi. Zeszyty naukowe Politechniki Łódzkiej, 89(389):161–168, 1981. In Polish

(English abstract available).

[75] A. Miller and J. Lewandowski. Praca turbin parowych w zmienionych warunkach.

Wydawnictwa Politechniki Warszawskiej, Warszawa, 1992. In Polish.

[76] MOSIX (web site). Available at http://www.mosix.org.

[77] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7:308–313, 1965.

170 Bibliography

[78] NEOS Server for Optimization (web site). Available at http://www-neos.mcs.anl.

gov/neos.

[79] OpenMP: Simple, portable, scalable SMP programming (web site). Available at http:

//www.openmp.org.

[80] OPNET Technologies, Inc. OPNET Modeler. Accelerating Network R&D. Product

brochure available from http://www.opnet.com/products/modeler/opnet_modeler.

pdf.

[81] OptTek Systems, Inc. (web site). Available at http://www.opttek.com.

[82] P. Y. Papalambros. Principles of optimal design. Cambridge University Press, 1988.

[83] A. Parkinson, R. Balling, J. Free, J. Talbert, D. Davidson, G. Gritton, L. Borup, and

B. Busaker. OptdesX
T M

; A Software System for Optimal Engineering Design. Users

Manual. Release 1.0. Design Synthesis, Inc., Provo, 1992.

[84] PAS, Inc. (web site). Available at http://www.pas.com.

[85] R. Penrose. The Emperor’s New Mind. Oxford University Press, 1999.

[86] G. Ch. Pflug. Optimization of Stochastic Models.The Interface between Simulation and

Optimization. Kluwer Academic Publishers, 1996.

[87] E. L. Plambeck, B.-R. Fu, S. M. Robinson, and R. Suri. Sample-path optimization of

convex stochastic performance methods. Mathematical Programming, 75:137–176, 1996.

[88] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.

SIAM J. Control and Optimization, 30(4):838–855, July 1991.

[89] J. Portacha. Optymalizacja struktury układu cieplnego siłowni parowych. PhD thesis,

Politechnika Warszawska, Warszawa, 1969. In Polish.

[90] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C. Cambridge University Press, 1992.

[91] W. L. Price. Global optimization by controlled random search. Journal of Optimization

Theory and Applications, 40:333–348, 1983.

[92] W. L. Price. Global optimization algorithms for a CAD workstation. Journal of Opti-

mization Theory and Applications, 55(1):133–146, October 1987.

Bibliography 171

[93] QWED, Ltd., Warszawa. QuickWave-3D User’s Manual, 2003.

[94] QWED, Ltd., Warszawa. QW-Optimizer User’s Manual, 2003.

[95] E. Radwański, R. Skowroński, and A. Twarowski. Problemy modelowania systemów

energotechnologicznych. Instytut Techniki Cieplnej PW, Warszawa, 1993. In Polish.

[96] S. S. Rao. Engineering Optimization. Theory and Practice. John Wiley & Sons, Inc.,

1996.

[97] S. M. Robinson. Analysis of sample path optimization. Mathematics of Operations

Research, 21:513–528, 1996.

[98] Rogue Wave Software, Inc. (web site). Available at http://www.roguewave.com.

[99] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.

The Annals of Statistics, 13(1):236–245, 1985.

[100] R. E. Shannon. Introduction to simulation. In J. J. Swain, D. Goldsman, R. C. Crain,

and J. R. Wilson, editors, Proceedings of the 1992 Winter Simulation Conference, pages

65–73.

[101] A. Shapiro and Y. Wardi. Convergence analysis of gradient descent stochastic algorithms.

Journal of Optimization Theory and Applications, 91(2):439–454, November 1996.

[102] A. Shapiro and Y. Wardi. Convergence analysis of stochastic algorithms. Mathematics

of Operations Research, 21(3):615–628, August 1996.

[103] H. Simon. Price Management. Elsevier Science Publishers, 1989.

[104] M. G. Singh and J-C. Bennavail. Price-Strat. A knowledge support system for profitable

decision-making during price wars. Information and Decision Technologies, 19:277–296,

1994.

[105] J. Sobczyk and A. P. Wierzbicki. Pulsar algorithms: A class of coarse-grain parallel

nonlinear optimization algorithms. Working Paper WP-94-53, International Institute

for Applied Systems Analysis, 1994.

[106] SOCS Capabilities. Web page available from http://www.boeing.com/phantom/socs/

capabilities.html.

172 Bibliography

[107] J. C. Spall. Multivariate stochastic approximation using a simultaneous perturba-

tion gradient approximation. IEEE Transactions on Automatic Control, 37(3):332–341,

March 1992.

[108] W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex designs

in optimisation and evolutionary operation. Technometrics, 4(4):441–461, November

1962.

[109] B. Stuckman, G. Evans, and M. Mollaghasemi. Comparison of global search methods

for design optimization using simulation. In B. L. Nelson, W. D. Kelton, and G. M.

Clark, editors, Proceedings of the 1991 Winter Simulation Conference, pages 937–944.

[110] A Svensson. A novel simulation based optimization method - applied to the dimensioning

of circuit switched networks. In Proceedings of the 1st World Congress on Systems

Simulation, September 1997.

[111] Synaps, Inc., Atlanta. Epogy 2003. User’s Guide.

[112] Synaps, Inc. Synaps Pointer — Optimize. Web page available from http://www.

synaps-inc.com/products/pointer/optimize/index.html.

[113] A. Taflove. Computational Electrodynamics: The Finite-Difference Time-Domain

Method. Artech House, Boston, 1995.

[114] K. Urbaniec. Określanie stanu układu cieplnego bloku elektrowni jądrowej metodą min-

imalizacji. Archiwum Energetyki, 1-2:3–12, 1979. In Polish (English abstract available).

[115] D. Verma. Supporting Service Level Agreements on IP Networks. Macmillan Technical

Publishing, Indianapolis, 1999.

[116] F. H. Walters, Jr., L. R. Parker, S. L. Morgan, and S. N. Deming. Sequential simplex

optimization: a technique for improving quality and productivity in research, development

and manufacturing. CRC Press, Inc., 1991.

[117] M. Warchoł, A. Karbowski, and E. Niewiadomska-Szynkiewicz. Rozdział 5: Narzędzia

do programowania równoległego na maszynach wieloprocesorowych z pamięcią wspólną.

In A. Karbowski and E. Niewiadomska-Szynkiewicz, editors, Obliczenia równoległe

i rozproszone. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2001.

[118] M. Warchoł, A. Karbowski, and E. Niewiadomska-Szynkiewicz. Rozdział 6: Narzędzia

do programowania na maszynach z pamięcią lokalną oraz w sieciach komputerowych.

Bibliography 173

In A. Karbowski and E. Niewiadomska-Szynkiewicz, editors, Obliczenia równoległe

i rozproszone. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2001.

[119] Y. Wardi. Stochastic algorithms with Armijo stepsizes for minimization of functions.

Journal of Optimization Theory and Applications, 64(2):399–417, February 1990.

[120] C. Z. Wei. Multivariate adaptive stochastic approximation. The Annals of Statistics,

15(3):1115–1130, 1987.

[121] D. Yan and H. Mukai. Stochastic discrete optimization. SIAM J. Control and Optimiza-

tion, 30(3):594–612, May 1992.

[122] D. Yan and H. Mukai. Optimization algorithm with probabilistic estimation. Journal

of Optimization Theory and Applications, 79(2):345–371, November 1993.

[123] G. Yin. On extensions of Polyak’s averaging approach to stochastic approximation.

Stochastics and Stoschastics Reports, 36:245–264, 1991.

174 List of Figures

List of Figures

1.1 Structure of optimisation problems with performance index based on model

output . 9

1.2 Exemplary shapes of areas with active explicit, implicit and feasibility constraints 12

1.3 Structure of simulation-optimisation vs. structure of hierarchical optimisation . 14

2.1 Hierarchy in power system modelling . 21

2.2 Diagram of the modelled industrial power plant in Janikowo 25

2.3 Diagram of simplified power system underlying the test model 29

2.4 Constraints active near IHE test problem solution 31

2.5 Various shapes of feasibility constraints for the test problem 33

2.6 Various types of constraints present in plant model problem 34

2.7 Performance index fluctuations near the test problem solution 36

2.8 Performance index stepwise character near the test problem solution 36

2.9 QW-3D improvements to the original FDTD space discretisation 38

2.10 The waveguide bend and its design variables 41

2.11 Performance index surface for whole domain in case of two-dimensional waveg-

uide design problem . 43

2.12 Close-up of performance index graphs near the optimum in case of two-dimensional

waveguide problem . 44

2.13 Impact of space discretisation on stepwise character of waveguide bend perfor-

mance index . 45

2.14 Matching various market models to an exemplary market response curve . . . 48

2.15 Graph of operations constituting a single time step in IP services market simulator 51

2.16 Impact of price change on the number of NSP customers in subsequent months 53

2.17 Feasible sets formed by implicit constraints in case of IP market model with

two products offered . 54

2.18 Multiple optima and non-differentiability of performance index determined by

an alternative IP market model . 55

4.1 Location of IHE test problem solutions found by CRS and Epogy 91

List of Figures 175

4.2 Results of performance index gradient estimation for the test problem case . . 95

4.3 Comparison of various hybrid algorithms and switching criteria for the test

problem . 103

4.4 Comparison of various hybrid algorithms and switching criteria for the plant

problem . 106

5.1 Solution approximations found by CRS and Powell routine exemplary runs for

2-D waveguide problem . 115

5.2 Location of solutions found by CRS and Powell routines w.r.t. the optimal

solution for 2-D waveguide problem . 117

5.3 Histogram of performance index at solutions obtained by Powell, CRS and

a hybrid algorithm, for 3-D waveguide problem 119

5.4 Solution locations for 3-D vs. 2-D waveguide design problem 121

5.5 Location of solutions found by various optimisation routines for two-dimensional

services pricing problem . 124

6.1 Structure of Simulation-Optimisation Framework 134

6.2 Standard problem features defined in Simulation-Optimisation Framework . . 135

176 List of Tables

List of Tables

2.1 Decision variables for the power plant problem 27

2.2 Decision variables for the test problem . 28

2.3 Decision variables for the waveguide bend optimal design problem 42

4.1 Test problem optimisation with CRS only; results for varying pool size and εA 88

4.2 Test problem optimisation with moderate-pool CRS only; results for varying

handling of simulation failures and small εA’s 89

4.3 Test problem optimisation with small-pool CRS only; results for varying han-

dling of simulation failures and small εA’s . 89

4.4 Test problem optimisation by EA only; results for varying εA and mutation

intensity . 93

4.5 Results of test problem solving attempts using steepest descent routine 96

4.6 Performance comparison of original and improved COMPLEX routines 99

4.7 Test problem optimisation with COMPLEX; results for varying complex size

and εA . 100

5.1 Indices related to efficiency and efficacy of various algorithms used for solving

3-D waveguide design problem . 120

B.1 Selected features of tools for distributed programming 161

