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Abstract

A review is made of algorithms that optimize performance of complex systems by using sim-
ulation to evaluate the performance value. Optimization problems are divided into classes
of stochastic and deterministic optimization. The focus is set on difficult cases where both
the response surface and the search domain are complicated. The conclusions can be drawn
that direct search methods, supported with parallel processing, are most widely used for
practical applications in both classes. The conclusions can also be made on growing demand
for general purpose reliable optimization routines, and they formulate the proposition for
the architecture of such routines.

Keywords: stochastic optimization, simulation optimization, constrained optimization

1 Introduction

The ever increasing power of contemporary computers tempts scientists to elaborate more
and more exact and complex models of real-life phenomena and systems. Such modelling is
often demanding, in terms of computational effort, due to two major factors. The first is the
natural complexity: the load of mathematical and practical knowledge put in the construc-
tion of a model results in numerous formulas whose solution can be obtained only numer-
ically. The second is the uncertainty (e.g. described by probability distribution functions)
that propagates within the model rendering it intractable but through lengthy simulations
and averaging.

Behaviour of a system represented by those models often depends on certain parameters
— the design variables. Setting their values so that the performance of the system is, in a de-
sired way, efficient is the major concern of designers. Employing optimization methods for
this purpose seems obvious, especially for the same reason as mentioned earlier: the growing
computing power encourages utilization of expensive optimization methods rendering hope
that the solution would be globally optimal.

Embedding a simulator in an optimization scheme is one of the main techniques and is the
subject of this paper. In this section, the reader will be presented with the formulation of the
simulation optimization problem, and some criteria that affect the choice of an optimization
routine. The existence or no of uncertainty is a matter of dividing the material into two
subsequent sections. Stochastic problems are described in Section 2, and deterministic ones
in Section 3. The concluding remarks are given in Section 4.

1.1 Problem formulation

The problem of optimization through embedded simulation can be written down in its
general form as

min
x∈D

f(x) , (1)

where f(·) is some performance function of a vector of design variables x. The value of f(·)
is computed through simulation of a given system. The optimal design, denoted by x?, is
sought that minimizes f(x) in domain D. The set of function values is real and bounded
from below.



1 INTRODUCTION 2

The scope of application for simulation optimization is very vast. It covers various
engineering tasks (e.g. optimal design of plants being designed), optimal control of existing
systems (e.g. set point optimization) and combinatorial problems under uncertainty, to
mention just a few. There exist many books (e.g. Rao, 1996) and articles (e.g. Carson and
Maria, 1997; Stuckman et al., 1991) on this subject. The aim of this paper is to communicate
the latest developments in the field, and also to focus the attention at somewhat unpopular
and difficult sort of problems: those with ill-posed constraints.

1.2 Problem characteristics

Using a simulator to compute an objective function value obviously does not, from strictly
theoretical point of view, define by itself a special class of optimization problems. One
can consider employing a simulator to compute the value of a linear function, in the ex-
treme case. However, performing simulation has several practical reasons, preconditions
and implications. Usually,

• The objective function is nonlinear (and, perhaps, discontinuous);

• The problem dimensionality is moderate (dim x < 1000);

• Most of the computation budget is consumed by the simulator, and very little by the
optimization algorithm.

Therefore, only several types of algorithms are commonly used, those that are well suited
to this particular kind of problems.

The major classification criteria for simulation optimization problems are the determin-
ism or uncertainty of a model (problem) and continuity of the design variables. The next
two features that affect the choice of an algorithm are problem constraints and the demand
that the solution be globally optimal. Then, further classification of applied optimization
algorithms may be done, depending on their ability to utilize extra information available
from the simulation, and on the ability to balance between simulation time and accuracy.
These topics will be shortly presented now.

1.2.1 Determinism and uncertainty

Determinism or uncertainty of a model is the main criterion for choosing the appropriate
optimization algorithm. If f(·) in (1) depends only on the vector of design variables x, then
the problem is deterministic. If the simulation result is affected by a random vector, then
the problem is stochastic. In the second case the objective function corresponding to f(·)
in (1) is usually the expected value of f(·), and the optimization problem can be rewritten
as follows:

min
x∈D

Eξf(x, ξ) , (2)

where ξ is some random variable.

1.2.2 Continuity of decision variables

A design variable may be allowed to change continuously or discretely (i.e. to take values
from a set of discrete values), or both ways. If all decision variables are continuous, we have
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a continuous optimization problem; if all decision variables are of the second kind, we have
a discrete optimization problem. All remaining problems are classified as mixed. In reality,
most of design problems are discrete due to standardization of available materials, discrete
nature of actuators, and alike. Also measurements performed on a system are discrete for the
same reasons. However, this fact by itself does not qualify all problems as discrete — such
qualification is determined by the change in system behaviour caused by the smallest possible
change of parameter value. If this change is not rapid (i.e. it is rather quantitative than
qualitative) then continuous optimization algorithms may be applied, as the discretization of
the algorithm output does not change the nature of a solution. Otherwise we really deal with
a discrete problem. Discrete problems may be attacked using a suite of direct optimization
algorithms mentioned later in this text. There exist also approaches, like branch-and-bound
method, employing continuous algorithms for the discrete optimization — mainly for their
effectiveness.

1.2.3 Constraints

Constraints are often welcome in optimization problems as they can significantly reduce
the search space, thus accelerating the operation of an algorithm (cf. Papalambros, 1988,
p. 387). A constraint may result from various reasons: range of control inputs of an object,
safety of operation of a modelled system, model validity etc. They are inevitable in design
problems; their lack usually means that some part of problem definition process has not
been performed carefully enough.

All the constraints that are defined explicitly with respect to the decision variables, are
desirable, since they can be either supported directly by an optimization routine (e.g. linear
ones) or handled by appropriate transformations of the design variables (Papalambros, 1988,
p. 383), or by penalty functions. Unfortunately, they also may be accompanied by a number
of implicit constraints, i.e. those depending on the variables of the system that are modelled,
which means that their values are known only after the simulation is performed success-
fully (if it finishes altogether). Those constraints, as more characteristic of a deterministic
optimization, are discussed in Section 3.

1.2.4 Global optimality of solution

Practice shows that a person interested in optimal design done via simulation optimization
is satisfied rather by a substantial improvement of the objective function than by its global
optimality. It is so in the case when the initial solution already exists. Nevertheless, it is
always welcome to have an optimization routine that looks for the global solution.

Globality of an optimization algorithm cannot be obtained without either rigorous as-
sumptions about the objective function and the domain (both being convex, for example),
or rather special arrangements concerning the algorithm and making it, usually, not very
efficient. The latter case is particularly painful when the simulation times are long. Often
the users, unable to make assumptions on f(·), finally resort to evolutionary strategies and
other expensive routines (see e.g. Faccenda and Tenga, 1992).

1.2.5 Utilization of additional information

Every evaluation of f(·) requires running the simulator which is often an opaque piece of
software (also called a black box). It means that there is no way of getting more information
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about the simulation outcome than those made available by the software manufacturer. In
practice, it means particularly that the derivative ∂

∂x
f(·) is not directly available.

As the gradient information can speed up the optimization by an order of magnitude,
there is always a strong need for it, especially in the stochastic optimization case. Few
specialized simulators (called in Pflug, 1996, p. 19 white boxes) offer the feature of gradient
computation, hence in most cases the optimizer has to estimate it by itself. Standard ways
of gradient estimation are presented in Section 2.

1.2.6 Adaptation of simulation parameters

The internal working of most simulators is affected by model parameters. Those parameters
influence such simulation features such as running time, overall accuracy, simulator inter-
nal rounding and discretization. The ability to accept different parameter values for each
simulation run is the valuable feature of a simulator. The question is whether the optimizer
can make the use of it. If so, rough simulation can be done in a preliminary phase of op-
timization, followed then by finer and still finer search as the solution is being approached.
Formally, those general simulation parameters can be perceived as extra elements of the
vector x of design variables.

2 Stochastic optimization

Let us assume now that the objective of stochastic optimization is to minimize the expected
value of a given function of both design and random variables, i.e. as in (2). Such problem
formulation dominates in the literature.

Virtually any deterministic method can be employed for stochastic optimization, pro-
vided that the function value and derivatives are replaced by their appropriate estimates
(see Pflug, 1996, p. 22), but such an ample switch from the original algorithm to its stochas-
tic counterpart is usually inefficient. Therefore, numerous algorithms have been designed
specifically for stochastic optimization. For their overview, see e.g. (Pflug, 1996; Andradót-
tir, 1998b; Fu, 1994).

Optimization algorithms are classified in this paper according to the kind of information
and assumptions they need to operate upon. An important category, called stochastic
approximation methods, follows the well known Cauchy’s steepest descent scheme that
requires both objective function and gradient values to be available. The second branch are
response surface methods which assume that f(·) belongs to a specific class of functions.
Those algorithms which operate with only the objective value available, making no particular
assumptions of f(·), form the third group of the direct search methods.

2.1 Stochastic approximation

Stochastic approximation methods solve continuous stochastic simulation optimization prob-
lems as formulated in (2) by utilizing a random estimate ĝ(x, ξ) of the objective function
gradient g(x) = ∂

∂x
Eξf(x, ξ). Algorithms of this type generate a sequence {xn} of problem

solution estimates, and the generic formula for one algorithm step is

xn+1 = xn − anĝ(xn, ξ) , (3)
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where {an} is a sequence of positive step sizes such that

∞�
n=1

an = ∞ and
∞�

n=1

a2
n < ∞ . (4)

The above algorithm should converge to a point where ĝ(x) = 0, which does not neces-
sarily have to be the minimizer of Eξf(x, ξ). To ensure that the routine (3) indeed converges
to the global minimum, additional assumptions are required, in particular that the objec-
tive function and the optimization domain are convex. This, however, does not yet ensure
the proper convergence if the objective grows faster than quadratically when x changes.
Moreover, this basic optimization scheme still does not support the constraints on x. Also,
the proper choice of {an} affects the algorithm convergence.

2.1.1 Gradient estimation

There exist three basic gradient estimation procedures: finite differences, infinitesimal per-
turbation analysis (IPA) and likelihood ratio method (LR). For another one, the frequency
domain experimentation, see (Jacobson, 1994).

Applying the method of finite differences, as requiring the least information of f(·), is
often the only possible approach. However, this estimator has a big variance, is biased and
computationally demanding. The estimate is obtained either by forward difference

ĝ(x, ξ) =
dim x�
i=1

ei
f(x + cei, ξ) − f(x, ξ)

c
(5)

or by central difference formula

ĝ(x, ξ) =
dim x�
i=1

ei
f(x + cei, ξ) − f(x − cei, ξ)

2c
. (6)

Here, ei denotes a versor along the i-th axis. Formulas (5) and (6) require dim x + 1 and
2 dim x evaluations of f(·), respectively. The optimization scheme (3) with a finite differences
formula applied for gradient estimation is known as Kiefer-Wolfowitz (KW) algorithm.

An important improvement to the above scheme was proposed in (Spall, 1992). Instead of
dim x+1 or 2 dim x evaluations of f(·), it requires only 2p evaluations, p being considerably
smaller than dim x. The idea is not to make an estimation of ĝ(·) in each direction by
separate shifts of x, but to perturb x simultaneously in all directions p times, and then to
calculate the mean

ĝ(x, ξ) =
1

p

p

�
i=1

��
f(x + c∆i, ξ) − f(x − c∆i, ξ)

2c

dim x�
j=1

ej

〈ej, ∆i〉

��
. (7)

In (7), ∆i is a realization of some zero-mean random variable, and c is a scaling factor
(actually, c is not constant but predetermined for each algorithm step n, usually cn =
c/nγ , c, γ > 0). By applying simultaneous perturbation gradient approximation method,
significant speed-up of computations can be achieved, especially for moderate and large
scale problems. For an exemplary practical application of this routine, see (Kleinman et
al., 1998).
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IPA and LR methods do not require running dedicated simulations to estimate the per-
formance gradient. Both procedures are based on the observation that the present results
of, say N , simulations (i.e. N realizations of ξ) can be used not only for computation of the
performance value but for computation of the gradient as well. Calculation of the perfor-
mance value usually involves some kind of averaging, and therefore the intermediate results
(e.g. “paths” of a discrete event dynamic system) are left unused by the finite differences
method. In IPA and LR, by the careful inspection of those results one can infer the be-
haviour of the system if x were going to change. The advantage of IPA and LR is that they
often yield unbiased and consistent estimates, but they require knowledge of the structure
of the simulated stochastic system — namely the cumulative distribution function for the
random variable ξ is supposed to be known.

Formally, both IPA and LR start off conceptually from the formula for the gradient of
the performance function:

g(x) =
∂

∂x
Eξf(x, ξ) =

∂

∂x � f(x, ξ)p(x, ξ)dξ = � p(x, ξ)
∂

∂x
f(x, ξ)dξ+ � f(x, ξ)

∂

∂x
p(x, ξ)dξ ,

(8)
where p(·) is probability density function for the random variable ξ. Since in general both
f(·) and p(·) can depend on x, the formula splits finally into the sum of two integrals. The
former integral can be estimated by computing the mean 1

N � N
i=1

∂
∂x

f(x, ξi) for the same
realizations of ξ that were used in performance computation. The handling of the latter
depends on the method: IPA transforms the problem to make it zero altogether, while LR
computes it utilizing still the same realizations of ξ. In LR (also known as score function
method), the second integral is rewritten as follows:

� f(x, ξ)
∂

∂x
p(x, ξ)dξ = � f(x, ξ)

p(x, ξ)
p(x, ξ)

∂

∂x
p(x, ξ)dξ = � p(x, ξ) � f(x, ξ)

∂
∂x

p(x, ξ)
p(x, ξ) � dξ

(9)
so as to resemble the first integral in (8). Now it can be estimated by computing the mean
1

N � N
i=1

f(x, ξi)
∂

∂x
p(x, ξi)/p(x, ξi) for the same realizations of ξ as previously.

IPA represents f(x, ξ) with ξ of any type (in particular, depending on x) in an alternative
way, by a function F −1(x, u) such that u is a random variable uniformly distributed in
[0, 1]dim u (and, certainly, independent of x). Under these conditions, and following the
rules from (8), we have:

g(x) =
∂

∂x
EξF −1(x, u) =

∂

∂x � F −1(x, u)du = � ∂

∂x
F −1(x, u)du . (10)

The above equation is simpler than formulas for LR because all the analytical effort is hidden
in the formulation of F −1, which is possible only if one knows how to make ξ out of u. Next,
differentiating F −1 resembles tracing system behaviour in presence of infinitesimally small
changes of x, and that is why IPA is called so. The gradient in IPA is approximated by
computing the mean 1

N � N
i=1

∂
∂x

F −1(x, ui), where ui are realizations of u, analogously to
ξ.

LR is applicable to a larger class of problems than IPA, but also the estimates obtained
from it tend to have larger variances. The optimization scheme (3) with any unbiased
gradient estimate applied is known as Robbins-Monro (RM) algorithm. For a comprehensive
overview of gradient estimation methods, see e.g. (Andradóttir, 1998a, p. 312) or (Pflug,
1996, p. 231).
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2.1.2 Variance reduction

Certainly, keeping the variance of both objective and gradient estimate as small as possible
improves the algorithm convergence. To achieve this, the following variance reduction tech-
niques are used: control variates, conditioning, stratified sampling, importance sampling
and antithetic random variables. They all are based on the same idea of utilizing some
information about the model to reduce the variance of the estimator. Different techniques
use different information to reduce the variance. Control variates technique redefines the
estimator of Eξf(x, ξ), involving in it some other random variable z, observable during
simulation, whose expected value is known exactly. By appropriate coefficient setting one
can get reduction of the variance, provided that f(·) and z are related. Conditioning tech-
nique is applied when the process of simulating the value of f(·) can be split logically in
two stages: first, when some random variable y can be observed, and second, when f(·)
is generated from y using some known conditional distribution. Instead of observing only
the final result, one observes y and directly calculates the conditional expectation. Strat-
ified sampling technique is in some way complementary to conditioning: here the detailed
distribution of the intermediate observation y is known, and the simulation needs to be
started only to complete the calculation of f(·). In practice the completing simulation is
run once for each of the values that y can take and its results, along with the known distri-
bution of y, serve to calculate the estimator of Eξf(x, ξ). Importance sampling technique
is used in cases when events that are unlikely in the simulation process contribute signifi-
cantly the value of Eξf(x, ξ), e.g. in Monte Carlo integration of peaky functions. A new
sampling density is chosen that puts more weight to an area that affects the estimator of
Eξf(x, ξ) strongly. Antithetic random variables technique uses, in subsequent simulation
runs, random variables having the same distributions as ξ, but being correlated in such
way that the estimator variance be reduced. For example, let f(·) be a monotonic function
of ξ = (ξ1, ξ2, . . . ), ξi ∼ U(0, 1) — then having a single realization of ξ one may run two
simulations: one with (ξ1, ξ2, . . .) and another with (1 − ξ1, 1 − ξ2, . . .) that are negatively
correlated, and hope that the same is true about f(·). For broader description of variance
reduction techniques, see e.g. (Pflug, 1996, p. 221).

Except from the above general techniques of variance reduction, for the purpose of
comparing different systems there is a widely used practice of utilizing the same realization
of random variable ξ in all steps of algorithm (3), known as common random numbers
scheme, and also referred to as sample path optimization. Having applied the common
random numbers, the optimization problem becomes, in fact, a deterministic one, and can
be solved by a variety of methods. Many methods want the number of elements of ξ to grow
as the current solution nears the optimum x? to increase the simulation accuracy. The proof
that (under certain assumptions) the solution x?,dim ξ of the corresponding deterministic
problem (based on a sample path of length dim ξ) tends to x? for growing dim ξ, is given
in (Robinson, 1996). For most of simulation optimization problems, various size of ξ can
be handled, and has a reasonable interpretation. If, for example, f(·) is the output from
Monte Carlo integration routine, then dim ξ is the number of sample points used for the
integration. In another example, where f(·) is the performance of a queuing system, dim ξ

is the number of interarrival times, i.e. the number of served customers.
Robinson (Robinson, 1996) discusses general convergence properties of sample path algo-

rithms with constant dim ξ; instead Shapiro and Wardi (Shapiro and Wardi, 1996a) consider
the plain stochastic approximation scheme, but with a vector of common random numbers
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being periodically augmented with new random elements. This operation improves accuracy
of estimates as the algorithm is getting closer to the solution x?, but restores randomness to
the problem. See also (Shapiro and Wardi, 1996b) for a study on convergence of methods
working in this fashion, especially in the case when f(·) cannot be estimated otherwise than
by Monte Carlo simulation.

2.1.3 Adaptation of the step size and precision

The question arises how to choose the precision of simulation (e.g. number N of points
for Monte Carlo simulation) and the sequence {an} of step sizes to maintain reasonable
compromise between the solution accuracy and the computing effort. The initial technique
is to use a fixed simulation precision, and to define {an} a priori:

an =
a

n
, (11)

where a is some initial step size. It is useful to consider another formula:

an =
b

c + n
where c � b > 0 , (12)

which prevents an from decreasing rapidly for small n. For (11), it is shown in (Pflug, 1996,
p. 290) that if we consider more general formula, an = a/nα, then α = 1 will still be the
best choice.

The same author proposes an adaptive procedure for choosing an, based on the observa-
tion that the step size is optimal if the gradients in two consecutive steps stay orthogonal,
i.e. 〈ĝ(xn, ξ), ĝ(xn+1, ξ)〉 = 0. The proposed routine reduces an by half if the above dot
product is going to be negative. Of course, for the above formula to make sense, the gra-
dient estimates have to be based on the same realization of ξ, at least for the purpose of
comparing ĝ(xn, ξ) and ĝ(xn+1, ξ).

The postulate for adaptation of an can be found in many papers (see e.g. Wardi, 1990;
Shapiro and Wardi, 1996b; Yan and Mukai, 1993). The general suggestion for an to be
the result of exact line minimization along ĝ(xn, ξ) in practical implementations usually is
replaced by the more liberal Armijo rule that in the case of algorithm (3) is:

|〈ĝ(xn − anĝ(xn, ξ), ξ), −ĝ(xn, ξ)〉| ≤ −ε 〈ĝ(xn, ξ), −ĝ(xn, ξ)〉 . (13)

This means that the product of the minimization direction −ĝ(xn, ξ) and the gradient
estimate at xn+1 does not have to be zero (as in exact minimization case) but a small
(delimited by ε) part of an analogous product at xn.

The authors cited above combine adaptation of a step size with the increasing simulation
precision. Wardi and Shapiro (Wardi, 1990; Shapiro and Wardi, 1996b) assume that the size
of the random variable (i.e. the number of random points passed to the simulator) grows to
the infinity in a predetermined way as the algorithm proceeds, and show the convergence
in this general case. Next, Yan and Mukai (Yan and Mukai, 1993) propose the measures to
monitor the progress of performance optimization and of the estimation error, and use them
to determine when the size of random variable ξ should be increased. The progress measure
is based on the absolute difference |f(xn, ξ)−f(xn+1, ξ)| of the objective at two consecutive
solution estimates for the same realization of the random variable, and the error measure is
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based on the absolute difference |f(xn, ξ) − f(xn, [ξ, ξ+])| of objective at the same solution
estimate, but for a realization of random variable ξ alone, and for ξ augmented with new
random elements ξ+.

The simulation accuracy, and the underlying size of random variable used to estimate
the objective and its gradient, depend on the kind of simulation. In this section mostly
Monte Carlo simulations were considered. However, (Chong and Ramadge, 1993) discusses
the case of optimizing the service time in a single server queue with generally independent
customer interarrival time (GI/G/1). It is proved that the next solution estimate xn+1 can
be computed as soon as a new customer arrives, and the algorithm still converges.

The ideas of step size and simulation accuracy adaptation are particularly important
when an approximation of the objective function is made which is more complex than
linear. Methods based on such approximations are discussed in Sec. 2.1.6.

2.1.4 Averaging

A very simple yet powerful modification to the classic stochastic approximation algorithm
that dramatically improves its convergence, was simultaneously invented by Polyak and
Ruppert. It is supported by appropriate proofs in (Polyak and Juditsky, 1991), and one of
numerical examples for its superiority can be found in (Yin, 1991). The idea is that instead
of observing a sequence {xn} of solution estimates, one can observe a sequence {xn} of their
averages

xn =
1
n

n�
i=0

xi . (14)

In this case, however, to preserve the algorithm’s convergence, one has to replace the formula
(11), or (12), with

an =
a

nα
, 0 < α < 1 . (15)

The idea of averaging has been developed further in (Kushner and Yang, 1993). The
authors propose that the averaging does not have to be performed over the whole history.
They prefer to calculate a moving average

xn =
1

wn + 1

n�
i=n−wn

xi (16)

and to set the averaging window size wn so that the convergence is still preserved. Generally,
wn depends on α in (15), i.e. wn decreases as α → 0 because bigger oscillations of {xn}
around x? need less averaging.

Yet another interesting adaptation of an idea of averaging is presented in (Delyon and
Juditsky, 1993). It is proposed to apply the basic averaging scheme (14) with the sequence
of step sizes defined a priori but indexed in other way than just with an index of the current
step. The indexing variable there is the counter of “flips” of ĝ(·) that happen nearby x?.
Therefore, the algorithm reduces its step size only in the final stage, while a vicinity of the
solution has been reached.

2.1.5 Constraints

Stochastic approximation algorithms are definitely not robust. Strong assumptions are
made in the literature with respect to both the objective function f(·) and the optimization
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domain D. To ensure global convergence, f(·) is required to be strictly convex, and D is
required to be closed and convex. Usually, it is assumed that D is a cartesian product of
the intervals of feasible values for each xi. The common approach to handle constraints is
to project the current estimate of x? on D in each step of the routine. Therefore, (3) would
be replaced by

xn+1 = πn+1 (xn − anĝ(xn, ξ)) , (17)

where πn is a constraint preserving operator.
Usually, πn+1(x) accepts x if x ∈ D, and preserves xn otherwise (for an example of

such algorithm see (Chong and Ramadge, 1993)). For another type of projection, recall
(Wardi, 1990) — there, the domain D is defined through a set of functions hi(·), hi(x) ≤ 0,
and a projection is integrated into the line minimization procedure: the step size an must
be chosen so that none of hi(xn − anĝ(xn, ξ)) becomes positive.

There is another, mentioned earlier, reason, for which the basic stochastic approximation
scheme is so widely supplemented with the projection feature. It is because (3) does not
converge if f(·) grows superlinearly. For badly chosen a and the starting point x0, the rate
at which {an} decreases is simply insufficient to overcome the growth of g(·) and the values
of {xn} start to oscillate around the solution. It is not so rare a case: Fu (Fu, 1990) considers
one-dimensional parameter optimization problem for a GI/G/1 queue with the projection
operator

π(x) = �� � xmin if x < xmin

xmax if x > xmax

x otherwise
, (18)

where xmin and xmax are the bounds. Unfortunately, the projection operator (18) does not
suffice because in the considered case f(x) → ∞ as x → xmin or x → xmax. It is proposed
to solve this difficulty by optimizing over a region that is smaller than [xmin, xmax]. Such
workaround causes another problem: how to reduce D so that x? still remain in the search
domain?

A solution to this problem would be to change the size of the region on which x is
projected in adaptive way. The proposal of such an adaptive projection was presented
in (Chen and Zhu, 1986). First, a sequence {Mn} of increasing radii is constructed, and
a counter σ that stores the number of steps in which the values xn − anĝ(xn, ξ) fall off the
circle C(0, Mσ). In a case when the violation of this circular constraint would happen, xn+1

is reset to some predefined point x+. It means that the algorithm starts over from x+, but
with an smaller and Mσ bigger than before, as the values of n and σ persist over algorithm
restarts. By choosing {an} and {Mn} skillfully good convergence can be obtained. The
idea presented in (Chen and Zhu, 1986) was further developed in (Andradóttir, 1995): the
author improves the algorithm working in the case when xn+1 is reset to x+. He proposes,
instead of returning to x+, to project xn − anĝ(xn, ξ) onto a predefined set. Proceeding in
this way, not all progress made in the previous iterations is lost.

2.1.6 Other improvements

Since 1951, the classic stochastic approximation algorithm has been modified and improved
by many authors in other ways than discussed in the paragraphs above. Perhaps the most
often adopted modification was to assume the step size an not to be a scalar but rather
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a matrix, like in the well known Newton’s method:

xn+1 = xn − J−1(xn)
∂

∂x
f(xn) , (19)

where J(xn) is the Hessian matrix of f(·) at xn. Such improvement was proposed in
(Ruppert, 1985; Wei, 1987), and claimed to accelerate algorithm convergence. Actually,
the authors have assumed that ∂

∂x
f(xn) was observable directly, and formulated the opti-

mization problem as finding x? such that ∂
∂x

f(x?) = 0. Their formula for {xn} merges (3),
(11) and (19) as follows:

xn+1 = xn −
a

n
D̂n(xn, ξ)ĝ(xn, ξ) , (20)

where D̂n(xn, ξ) is an estimate of J−1(xn) at xn computed using finite differences scheme.
The latter paper proposes two more additions to (20). First, the estimation of Dn is

based also on the values of D in the previous steps. Second, the identity matrix is used in
steps where the Hessian matrix would be singular.

The paper (Plambeck et al., 1996), mentioned already, proposes an entirely different
algorithm in which the quadratic problem (QP) is solved in each step to find xn+1. The
quadratic problem is deprived of any randomness, because all the necessary computations in
a single step are performed for the same realisation of ξ. The proposed approach is to find the
subgradients s1, s2,... of f(·) at xn, thus constructing a cutting-plane approximation of the
performance function. The problem passed to a QP solver is to minimize this approximation,
which is additionally regularised so that xn+1 be not too far from xn. Therefore the routine
is as follows:

xn+1 = xn + d d, v = arg min � v +
||dn||2

tn
, v >= sT

i d � , (21)

where tn is the regularisation coefficient. QP also allows to support any other equality or in-
equality constraints that have been imposed on the original problem externally. Application
of subdifferential broadens the suite of problems supportable by the algorithm.

A significant improvement of optimization efficiency can be achieved not only through
the algorithm amendments, but also by simplifying the simulator itself. Let us return once
again to (Plambeck et al., 1996) for an example. The authors consider discrete tandem
production lines, i.e. those producing separate workpieces. However, they use simulation
routines suitable for the continuous products like fluids. By doing so, they reduce the
simulation time by an order of magnitude at the cost of 4% error in f(·) relative to the
discrete simulation.

While certain researchers’ goal is to reduce the variance, others deliberately make the
optimization routines wander for some time in D in search for the global, not local, solution.
Such an algorithm is presented in (Gelfand and Mitter, 1991); there every new solution
estimate is perturbed with a multidimensional independent Gaussian random variable. The
variance of this variable diminishes as the algorithm proceeds, making it less and less able
to leave the attraction area of a local minima. This algorithm resembles the simulated
annealing scheme, described later.



2 STOCHASTIC OPTIMIZATION 12

2.2 Response surface methods

Unlike in stochastic approximation, in the classic response surface methods there is no
interaction between the optimizer and the simulator. The optimization is performed in
three phases:

1. Simulation is invoked at a certain number of points from the domain D. Those points
can be chosen at random or using some predefined scheme. The results of simulations
are passed to Phase 2.

2. The unknown function Eξf(x, ξ) is approximated by some known deterministic func-
tion f̃(x) by regression, using the values calculated in Phase 1.

3. The minimizer of f̃(x) is sought by some optimization routine.

In most practical applications, phases 1–3 are executed more than once. For subsequent
executions, as the solution estimate approaches x?, the functions f̃(·) of more complex
structure are being fitted (e.g. first linear, then quadratic, finally cubic). Also the region from
which the samples of f(·) are drawn, becomes tight. According to (Carson and Maria, 1997),
the response surface methods perform in general better than their stochastic approximation
alternatives.

2.3 Direct search methods

The algorithms discussed in this section are directly value based, i.e. their behaviour is based
only on the value of the objective, without any support of the objective derivatives. On
one hand, the absence of such support must definitely have an adverse impact on algorithm
effectiveness, especially for medium and large scale problems. On the other, it improves the
algorithm robustness.

Fortunately, in many practical problems the dimensionality is moderate or it can be
made moderate by some sort of aggregation. Then one can think of applying the simplest
imaginable direct search method: the random search technique. This technique works by
choosing at random the points from D, keeping the record of best the one found so far.
However, due to the randomness of f(·), the best point found by this algorithm may still
happen to lie quite far from x?. Like in stochastic approximation methods, some kind of
averaging must be employed to mitigate the fluctuations of f(·).

2.3.1 Simplex search

The averaging may be accomplished not only by repeating simulation several times for the
same x. Another approach consists in maintaining a pool Xn = {xn,1, ..., xn,m} of m trial
designs in each algorithm step so that simulation is performed once for each xi,j. Then, the
pool in the next step is based on the current pool contents.

Such algorithm was proposed in (Spendley et al., 1962). It is a classic simplex search
routine with adaptations for stochastic optimization problem. The algorithm in consecutive
steps moves, by reflections, a simplex of trial points until proximity of x? is reached. Then
the simplex starts to wander around the solution which is the sign to stop the procedure.
Without any improvements that original simplex algorithm would probably get anchored
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far from x? by an occasional unusually good simulation result. To avoid that, the authors
propose to repeat simulation only for “stale” simplex vertices to force the algorithm forward.

The simplex search, endowed with expansion/contraction operations and known as the
Nelder-Mead procedure, is a widely applied routine. However, when employed for stochastic
problems, it terminates prematurely due to far too frequent contractions it happens to make.
This drawback is addressed in (Barton and Ivey, Jr., 1991). The authors, after a brief
review of the former algorithm amendments, point out the cases where resampling of f(·)
solves the problem. They additionally advice making the contraction operation less strong.
Yet another revised simplex procedure is proposed in (Humphrey and Wilson, 1998), and
numerical examples are provided showing its superior performance relative to the algorithm
presented in (Barton and Ivey, Jr., 1991). The postulated changes include geometrical
decrease (resp. linear growth) of the contraction (resp. expansion) coefficients and procedure
restarting (with preserving the actual best solution) as the routine proceeds.

Simplex search routines, like all routines where the selection of a trial point is driven
by ranking of points in the pool, work well if the fluctuations of f(·) due to random factors
are so small that they do not affect the ranking of the pool points. It is usually the case in
the preliminary stage of optimization. When approaching x?, the ordering of points in Xn

becomes distorted by the randomness of ξ, and the algorithms start oscillating around the
solution.

2.3.2 Simulated annealing

Unlike simplex search, the simulated annealing algorithm works with just one point only at
each step which is the current solution approximation xn. It makes attempts to improve
it by choosing at random some candidate point x̃n+1 in the neighbourhood of xn, and
eventually accepting it according to the following formula

xn+1 =
����
��

� x̃n+1 if f(x̃n+1) < f(xn),

x̃n+1 with probability e−
f(x̃n+1)−f(xn)

Tn if f(x̃n+1) > f(xn),

xn with probability 1 − e−
f(x̃n+1)−f(xn)

Tn if f(x̃n+1) > f(xn),

, (22)

where Tn is the current “temperature”, i.e. a coefficient allowing the algorithm to climb
uphill in search for global optimum. Tn must decrease to zero as the algorithm proceeds.

Adaptations of algorithm (22) to stochastic problems use an estimate of the objective
function value (mostly it is the mean of an increasing number of observations of f(·) at x̃).
They are also greedy, i.e. they preserve the best solution estimate found in the course of
the algorithm run. Convergence properties of such algorithm are discussed by Gelfand and
Mitter (Gelfand and Mitter, 1989). Next, Fox and Heine (Fox and Heine, 1995) postulate
some amendments that prevent simulated annealing from staying too long without a move,
thus improving its efficiency.

An adaptation of the number of observations used to estimate the objective is proposed
by Bulgak and Sanders (Bulgak and Sanders, 1988). They postulate that the number of
observations must be increased only if the difference f(x̃n+1, ξ) − f(xn, ξ) is small w.r.t
the current confidence intervals for f(x̃n+1, ξ) and f(xn, ξ). Moreover, if the replication of
observations of f(·) does not allow for reliable comparison, then the temperature is reduced
and another trial point x̃n+1 is chosen. Such algorithm has been successfully applied for an
exemplary problem of buffer sizes optimization in transport systems. A similar algorithm is
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also used in (Barretto et al., 1999), and applied for steelworks design parameters (number of
cranes, furnaces etc.) problem. In both cases the search domain was discrete, and a proper
neighbourhood had to be constructed so that the algorithm could penetrate the whole search
space.

Generally speaking, simulated annealing can be used in stochastic optimization, both
continuous and discrete, provided that the variance of the estimator of the objective func-
tion decreases to zero for growing number of observations. Also, proper definition of the
neighbourhood is an important issue.

2.3.3 Other algorithms

An algorithm quite similar to simulated annealing, and frequently cited, has been presented
in (Yan and Mukai, 1992). Instead of dealing with the randomness of the objective function
by averaging of an increasing number of samples, the authors propose to utilize the random
character of the objective for the purpose of searching for the global optimum. In fact, the
needed modifications of the basic simulated annealing scheme are few: the main is that
instead of looking for the minimum of Eξf(x, ξ) one looks for such x that maximizes the
probability that f(x, ξ) ≤ ϑ. Here, ϑ is a random variable uniformly distributed over the
interval [fmin, fmax] of approximate values that f(·) can take. In practical realization of this
algorithm the value f(x̃n+1, ξ) is measured Mn times against a sort of a “stochastic ruler”,
i.e. against ϑ. If in all measurements the test f(x̃n+1, ξ) ≤ ϑ is passed, then the candidate
x̃n+1 is accepted. Of course, for Mn growing with the progress of optimization, the tendency
to accept worse candidate points decreases, analogously to the classic simulated annealing
scheme. The proposed algorithm converges under relatively mild conditions, and is simple
to implement.

Another, still more general and more global algorithm was proposed in (Andradóttir,
1996). This routine is also based on the simulated annealing scheme (or rather, on the
random walk scheme). It operates on the domain D being a set of a finite number of
points and for all the elements of D the probability of being chosen as the next trial point
x̃n+1 is the same. Therefore, no cooling scheme does exist, but for each point in D the
number of times that this point has been visited, is recorded. As the algorithm proceeds,
the statistics are collected, and the point visited most often is considered to be the solution.
In this routine the candidate x̃n+1 is accepted to be xn+1 only if f(x̃n+1, ξ) < f(xn, ξ). The
convergence of this algorithm to the global optimum is demonstrated.

Quite often the engineers and researchers, inspired by widely recognized classic algo-
rithms, develop their own routines, often tailored to the specifics of a particular problem.
Those routines can combine the techniques existent since long time in separate algorithms,
into one piece of software. An example of such approach can be found in (Svensson, 1997),
where the problem of optimal network design is addressed. The author employs common
random numbers scheme (to reduce the estimator variance), adaptation of sample size (to
increase accuracy), perturbation analysis and, finally, the tabu search paradigm, obtaining
a method that performs very well, at least for the considered class of problems.

There are many other well known and widely applied routines for stochastic optimization
problems: evolutionary strategies, tabu search, importance sampling methods. For a short
discussion on them and for further references, see (Andradóttir, 1998b; Carson and Maria,
1997; Stuckman et al., 1991). Some of them will also be mentioned in Section 3, as they are
suitable to cope not only with randomness, but also with other difficulties caused by the
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simulators.

3 Deterministic optimization

This section addresses difficulties other than randomness that emerge in simulation-based
optimization problems. It does not mean that in the cases considered below simulation
always yields a result not distorted by some unpredictable value — in reality this happens
rarely. Yet, the assumption can be made that the influence of uncertainty on the workings
of the algorithm is negligible. Here, constraints and the shape of the objective function
surface are of the most concern.

3.1 Implicit constraints

Apart from being specified explicitly by an open formula, the search domain D may also be
defined not directly. Consider a case where, as a result of simulation, the value of a vector
of dependent variables v = (v1, v2, . . . ) is computed. Let the elements of v be subject to the
box constraints, vi,min ≤ vi ≤ vi,max (one can also consider some more general open-form
constraint specification for v). Generally, there is no way of mapping those constraints
onto D. This problem appears, for example, in control optimization for multilevel systems,
and was reported in (Findeisen et al., 1980, p. 36). In this case solving local optimization
problems in the lower layer is the analogue of the simulation — the local solutions may
turn out to be infeasible, and, usually, no general prescription exists for how to choose
coordination decisions so that the box constraints on v are satisfied.

Determining D may become even more troublesome if the simulation does not yield any
measure of by how much the constraints on v are violated. It is either because the simulation
fails altogether (see Kamola and Malinowski, 2001, for an example) or it gives some output
which is then disqualified by a verification procedure. In such case no indications as to the
direction towards the feasible region can be derived from the simulator.

3.2 Shape of the response surface

Steep slopes, plateaux burrowed with narrow valleys, saddle points, discontinuities —
simulation-based objective functions raise difficulties of all sorts for optimization routines.
These unpleasant features appear partially due to imprecise model understanding, result-
ing in internal switching inside the simulator, partially due to finite computation precision
and rounding, and partially because such is the real nature of the simulated system (recall
Fu, 1990). For an example of such an objective function, refer to (Kamola and Miazga, 2001)
where a problem of a microwave guide design is described.

3.3 Present approaches

In the literature can be found many guidelines for optimization problem preparation. As
the constraints are regarded, most authors advise to take a closer look at the model first
(see Papalambros, 1988, pp. 382–399). The constraints can be classified as natural (implied
by natural laws of the modelled system) or practical (resulting from common sense, former
practice, and placed to accelerate numerical searches). Initially, only natural constraints
should be considered and, if possible, eliminated through appropriate transformations and
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an introduction of slack variables — so that the nature of optima does not change. Any
implicit constraint whose nature can be identified, should be mapped onto search domain D
(see Atkinson and Donev, 1992, p. 189). Finally, only those practical constraints are added
that are desirable either to maintain model validity or to speed up the computations. One
has to be particularly careful while applying the latter ones — search space reduction may
really accelerate working of the algorithm, but when applied over-eagerly, it can deprive the
domain of the optimal solution altogether.

If the above procedure had been followed and implicit constraints were still active, then
the application of a penalty function could be the solution. Various penalizing schemes are
discussed in (Rao, 1996, pp. 487–517). The penalty function can, however, be applied only
when one knows the extent to which the constraints are violated. If even that little data is
unavailable, e.g. due to simulation failure, then the only approach suggested (see Walters,
Jr. et al., 1991, pp. 138–143) is to set the penalty function value to +∞. Unfortunately, by
doing that one makes the response surface like a sieve, with whom few solvers can cope.

To make matters worse, inconvenient response surfaces and constraints are frequently
combined with moderate or even large dimensionality of the problem, thus rendering it
intractable by direct search methods in their pure form. That is why so many authors (cf.
Hammel, 1997, pp. 1–9 and most of the bibliography items cited above) insist on taking
a deeper look into the model, and to overcome the difficulties by some kind of aggregation,
mapping and heuristics.

Those suggestions are followed for most practical applications. For example, an au-
tomatic design procedure of a micropump is reported in (Meinzer et al., 1996) where the
costly finite element simulation was applied only to find the coefficients for some much
faster mathematical model (computed by PSPICE circuit simulator), which was therefore
explored by a genetic optimization algorithm. Next, (Brady and McGarvey, 1998) gives
an account of a heuristic algorithm developed specifically to optimize the operating perfor-
mance of a pharmaceutical laboratory. This algorithm uses a histogram of objective values,
created by some standard direct search algorithm, as a starting point. Genetic algorithm,
simulated annealing and tabu search were tested as standard algorithms. Another merger
of genetic algorithm and tabu search features can be found in (Glover et al., 1996). The
authors present a technique called the scatter search, similar to genetic algorithm, with the
difference that the offspring is created deterministically. An important supplement to the
method is a neural network that makes predictions of the objective value, thus avoiding
function evaluations at possibly bad points. The method was applied for optimal design of
a job shop system.

Given the complexity of simulation optimization problems, parallel computing has cre-
ated big hopes. Many of the routines mentioned in this paper can be executed in parallel,
at least partially. Particularly all re-samplings of f(·) can be executed simultaneously; also
the offspring generation in genetic algorithms can be done by many processors at the same
time. Several algorithms have been developed specifically for the purpose of being executed
in parallel. One of those (see Dennis and Torczon, 1991) is a simplex search routine, mod-
ified so that the simplex operations are performed with respect to the best vertice. Such
a change requires not one but dim x function evaluations per each single operation. One
may also consider making some more steps in advance — this generates a lattice of points,
and the evaluation of f(·) for them is performed in parallel. Another routine, described
in (Hough and Kolda, 2001) and called parallel pattern search, consists of evaluating the
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objective at several points in a neighbourhood of the current approximation xn, and choos-
ing the best of them as xn+1. Those points, unlike in the case of simulated annealing, are
chosen in a deterministic manner, thus forming the above mentioned pattern around xn. In
general, the papers presenting parallel algorithms focus rather on their practical applicabil-
ity, effectivity and tolerance to network faults rather than on strict mathematical proofs of
their convergence.

3.4 Reality and the proposed hybrid approach

Two conclusions may be derived from the above survey of the literature. The first is that,
given the problem specific features, direct search methods can only be applied. However,
they are rarely used in their generic form; instead they are tuned to a concrete problem,
and this tuning is based on a substantial knowledge about the system being optimized.
The second conclusion is that parallel computing is commonly employed to mitigate large
computational burden of the “lengthy simulation/direct search optimization” couple.

Experienced developers and researchers, asked in (Boesel et al., 2001) to express their
position statements as to the future of simulation optimization given the current state of
the art, stressed that more effort should be put in making simulator and optimizer work
together and not treat each other as a “black box” unaware of its partner capabilities and
requirements. To attain this:

• simulation-optimization interface needs to be developed that will pass as much infor-
mation in both directions; this is because

• the optimizer should react to the simulation in the midst of its run, e.g. to detect
and cut early calculations unworthy for the optimization routine; good simulation-
optimization interface makes it possible that

• the optimizer, equipped with problem classification procedure, will detect the nature of
the optimization problem as presented by simulation output and will choose adaptively
the optimization routine best suited for it; moreover

• whenever possible, the optimization should make the benefit of distributed and parallel
computing to overcome routines high computational speed requirements.

Following the above postulates by managers and software developers is, undoubtedly, de-
sirable but there are practical reasons that seriously jeopardize the proposed tight simulator-
optimizer collaboration. Guilty parts are software users and developers. Unfortunately,
there are more and more records of cases where the end user of a commercial simula-
tion/optimization software is not interested in the nature of a system he/she wants to
optimize. All one can and want do is to supply the optimization solver developer with
an appropriate third-party simulator whose internal workings he does not know — and to
request the working solution. Therefore, the developer is faced with an opaque piece of
simulation software and a vague — if any — description of the nature of the simulated
system. This also happens partially due to the policy of simulation software manufacturers,
but prevalently due to more and more common attitude of customers: they are willing to
pay, and in exchange they demand the working solution, without getting into details.

In author’s opinion, such a situation, as unpalatable as it may seem, has to be finally
accepted, and some general methodology has to be elaborated to handle the cases when
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literally nothing more is known about the problem than the output objective values obtained
from a black-box simulator. It is believed that employing some hybrid optimization scheme
could be the right approach. Such a hybrid approach would be a mixture of several well
known methods that has been improved to handle troublesome implicit constraints. Those
methods would work sequentially, the solution obtained by one method being then the
starting point for the next one. Moreover, such optimization scheme should make benefit
from the parallel computing environment, if available.

Some initial steps towards this proposition were made, as reported in (Kamola and
Malinowski, 2001). The authors describe the problem of searching for an optimal working
point of a model of industrial power plant. Given the values of some design variables,
the values of dependent variables are calculated by a simulator. The hybrid method was
applied, consisting of CRS2 algorithm (see Price, 1987) followed by COMPLEX routine (see
Box, 1965), the latter amended to support non-connected domains. The results obtained
were satisfactory.

The current research carried by the author is directed towards the development of
a general-purpose simulation optimization broker. Such broker allows to plug in a number
of widely known optimization routines at one side, and a simulator (or a pool of simulators
in the parallel case) at the other side. At the simulation side, the broker has to adapt to
the amount of information available from the simulator, and to the possibilities to control
the simulation process. At the optimization side, the broker has to adapt to the specifics of
the routines used, invoking intelligently the most appropriate of them. It also has to han-
dle the cases when the simulation fails. Comprehensive results of author’s experience with
simulation optimization practical problems, and of research on the criteria for switching
between methods, are to be presented in dissertation Algorithms for optimisation problems
with implicit and ill-defined constraints, now in preparation.

4 Summary

This paper was intended to present merely an overview of approaches for optimization
problems where the objective function values can be obtained only by means of simulation.
Such problems are mostly nonlinear, and gradient information is rarely available, so the
attention was focused on direct search methods. This field of research, although divided
initially in two areas of stochastic and deterministic optimization, appears to be equally
populated with direct search methods. Those methods, possibly due to their innate distrust
in function value evaluation at a single point, have gained their position both in the fields
of global and stochastic problems.

Constraints still present a considerable difficulty in simulation-based optimization. Many
authors suggest that they should be eliminated, which would require a deeper study on the
model of the system being optimized. However, such study is often impossible, either
because of model complexity, or because of software market reality.

The author proposes to accept the situation as it is, and to perform research on hybrid
optimization methods that, with the help of parallel computing, can hopefully meet the
customer needs.
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