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Abstract: A new approach to nonlinear Model Predictive Control (MPC) is discussed in this work.

A custom user-defined cost function is used in place of the typically considered quadratic norm. An

approximator of the cost function is applied to obtain a computationally simple procedure and lin-

earization of two trajectories is carried out online. The predicted output trajectory of the approximator

and the predicted trajectory of the manipulated variable, both over the prediction horizon, are repeat-

edly linearized online. It yields a simple quadratic programming task. The algorithm is implemented

for a simulated neutralization benchmark modeled by a neural Wiener model. The resulting control

quality is excellent, identical to that observed in the MPC scheme with nonlinear optimization. Valid-

ity of the described MPC algorithms is demonstrated when only simple box constraints are considered

on the process input variable and in a more demanding case when additional soft limitations are put

on the predicted output. Two structures of the approximator are compared: polynomial and neural;

the advantages of the latter one are shown and stressed.

Keywords: Model Predictive Control, Cost function, Neutralization reactor, Neural networks.

1 Introduction

Model Predictive Control (MPC) algorithms compute online the control policy from an optimization

problem the objective of which is to describe the predicted quality of control [24, 34]. Typically, the

squared predicted control errors are considered over some time horizon. Such a classical approach

works efficiently for numerous processes, example applications of MPC are: chemical reactors [25, 30],

evaporators [29], distillation columns [33] and boiler–turbine systems [18]. MPC methods have been

also utilized for fast systems, e.g. drones [38], robotic manipulators [16], carrier-based aircrafts [35],
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open-loop unstable mechanical systems [32], electro-mechanical systems [15], inverter-based electrical

drives [12] and even stochastic systems [1]. Recently, the classical formulation of MPC has been

extended. For example, MPC algorithms may control networked systems affected by Denial-of-Service

(DoS) attacks [4]. An interesting idea is cooperation of MPC with the sliding mode control method [8].

Such an approach can be further extended by imposing a contractive Lyapunov condition to guarantee

the closed-loop stability [7].

Although the classical sum of squared predicted discrepancies between the setpoint and the pre-

dicted process output, i.e., the predicted control errors (the L2 cost function), is successfully used

very frequently, some alternatives are also reported. Firstly, a penalty term may be added to the cost

function. Such modifications are necessary for MPC algorithms with the infinite prediction horizon;

the penalty term approximates the predictions made from the end of the finite horizon to infinity [27].

Other penalty terms are motivated by economic reasons. The MPC algorithms presented in [3, 22, 39]

measure the economic cost in the penalty term of MPC; the additional economic penalty term is

also minimized during online control. In all cited solutions, the predicted control errors are measured

in the MPC cost function in the simplest way, i.e., the L2 cost function is used. Such a choice has

one essential advantage because a quadratic optimization problem is obtained assuming a linear (or

successively linearized online) process model.

In some approaches, however, the L2 cost function is not utilized to assess the impact of the

predicted control errors in MPC. The most frequent choice is the sum of absolute values of predicted

control errors (the L1 cost function). Provided that a linear model is used, a simple to solve linear

optimization task may be derived [6, 17]. When a nonlinear model is necessary, online nonlinear

programming repeated at each algorithm execution is used [5, 9] or online model linearization may

be employed to reduce the computational complexity [21]; an alternative is to use the trust-region

sequential quadratic programming method [2]. As pointed out in [5], the MPC-L1 approach is expected

to give better control quality than the classical MPC-L2 one and may be beneficial for stability [26]. In

addition to the L1 cost function, the maximum predicted control error (the L∞ norm) might also be

utilized [23]. If a powerful optimization solver is available, in theory, we can use different nonlinear cost

functions in MPC. Unfortunately, in the case of a nonlinear cost function and a nonlinear dynamical

model used for prediction, we obtain a complex nonlinear optimization task that has to be solved at

each algorithm’s execution.

This work presents an MPC algorithm in which the predicted control errors are measured using a

user-defined, custom cost function. The function may generally be defined analytically or in a graphical

form. A differentiable approximator approximates the cost function. In general, different approximator

structures are possible. In this work, two representations are considered: polynomial and neural ones.

We study the influence of some imperfections of polynomials, even of a relatively high degree, on the

control quality. The neural approximator has excellent accuracy and is recommended. The trajectory

of the predicted controlled variable and the trajectory of the predicted control errors embedded in

the custom cost function are linearized online along some trajectory of the future changes of the

manipulated variable to get a computationally not demanding algorithm. As a result, a simple to solve

quadratic programming task is derived. This work extends [21] in which the L1 cost function is utilized
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in linearization-based MPC. In this work, practically any cost function is possible since a differentiable

approximator is used and the constraints imposed on the predicted process output are allowed. To

guarantee the existence of the feasible set, soft constraints are used, which may be temporarily violated

when necessary. The presented MPC methods are compared with the classical alternatives, i.e., the

MPC scheme with nonlinear optimization (and the custom cost function) and the MPC scheme relying

on the classical L2 norm. Moreover, the influence of the cost function approximator on the resulting

control quality is also studied. All things considered, the following features of the novel approach

presented in this work must be pointed out:

• A custom cost function is used in nonlinear MPC, in which a nonlinear model is used for pre-

diction, but a computationally simple calculation scheme is derived. Non-classical cost functions

(L1 and L∞) have been used in MPC, but efficient implementations are possible if a linear model

is used [6, 17, 23]. When a nonlinear model is considered, a nonlinear optimization task is solved

on-line [5, 9]. As a result of an advanced trajectory linearization method, a relatively simple

quadratic task is solved in our approach.

• The derived MPC optimization task has only one global solution.

• Feasibility of the optimization is guaranteed by soft constraints put on the controlled variable.

• The cost function used is practically not restricted. It is approximated by an approximator that

is required to be differentiable. Different structures of approximators may be used, e.g., neural

networks of different kinds.

• The number of optimized decision variables is the same as in the classical approach to MPC.

• Easiness of implementation.

• The structure of the dynamical model used is not limited provided that it is differentiable.

A preliminary, simplified version of one of our approaches was shortly described in the conference

work [28] in which only simple box constraints on the manipulated variable were possible, trajectory

linearization was performed in a simplified manner, computational efficiency was not studied and the

influence of the approximator type on control quality was not discussed.

Efficacy of the new approach to nonlinear MPC is checked for a pH reactor process [10] which is

a typical benchmark to validate nonlinear control methods. Two variants of the MPC algorithm are

compared in simulations as only one or multiple trajectory linearizations at single sampling instants

may be possible. High accuracy and efficacy in MPC of the neural approximator are compared with

properties of polynomial approximators. A thorough comparison of a few configurations of the MPC

algorithm with two custom cost functions is discussed; the results are compared with those possible

when the classical squared norm is used. Finally, the satisfaction efficiency of nonlinear constraints

related to the predicted process output is validated.

The outline of this work is the following. The problem is formulated in Section 2. Section 3 derives

the computationally fast MPC algorithm with a custom cost function; in particular, the quadratic

programming task with soft constraints put on the predicted controlled process output variable is
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formulated. Efficacy of the discussed methods is thoroughly discussed in Section 4 which presents

simulation results for a pH (neutralization) chemical reactor benchmark. Finally, concluding remarks

are formulated in Section 5.

2 Preliminaries and Problem Definition

The symbol u is used throughout this work to denote the manipulated process input variable while

the symbol y stands for the controlled process output, respectively. The decision vector computed at

each execution of MPC, i.e., each sampling instant, is

4u(k) = [4u(k|k) . . .4u(k +Nu − 1|k)]T (1)

where 4u(k + p|k) stands for the change of the manipulated variable for the future sampling k +

p computed at the sampling k, i.e., 4u(k + p|k) = u(k + p|k) − u(k + p − 1|k); Nu denotes the

control horizon. The decision vector is found from an optimization problem carried out online. The

rudimentary constrained MPC optimization task is

min
4u(k)

{J(k)}

s. t. (2)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

ŷ(k + p|k) = fmodel(k + p|k) + d(k), p = 1, . . . , N

where the acronym “s. t.” stands for “subject to”. In general, the limitations are put on manipulated

and controlled variables. The scalars umin and umax define the range of the manipulated input variable,

the scalars 4umin and 4umax define the restrictions related to the rate of change of the same variable,

the quantities ymin and ymax specify the limits put on the predicted values of the process output.

ŷ(k + p|k) stands for the predicted value of the controlled variable for the sampling instant k + p

determined at the instant k. Since a dynamical model is used to calculate the predictions, the general

prediction equation

ŷ(k + p|k) = fmodel(k + p|k) + d(k) (3)

is explicitly taken into account as the last constraint over the prediction horizon, i.e., for all p =

1, . . . , N . fmodel(k + p|k) denotes the model output for the sampling instant k + p computed at the

sampling k and d(k) stands for an estimation of the unmeasured disturbance that affects the process

output at the time k. The prediction of the controlled variable cannot be computed as the model

output, i.e., ŷ(k + p|k) = fmodel(k + p|k), because, in such a case, the MPC algorithm does not have

the integral action which compensates for all model errors, measurement noise and actual process

disturbances [34]. Typically, we assume that the disturbance estimation does not change over the

prediction horizon [34]. It is found as the difference between the current measured process output and

the model output. When the MPC optimization task is solved, only the first element of the optimal
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vector (1), i.e., 4u(k|k), is sent to the process and the computation procedure is executed at the

following sampling instants.

Let us recall definition of the classical L2-type MPC cost function

J2(k) =

N∑
p=1

(ysp(k + p|k)− ŷ(k + p|k))2 + λ

Nu−1∑
p=0

(4u(k + p|k))2 (4)

Square norms are used in both parts of the function J2(k). The first part of the cost function measures

the squared future deviations between the setpoint and the predicted process output, i.e., the future

control errors; they are considered over the prediction horizon N . The predictions ŷ(k + p|k) are

calculated from the general prediction equation (3). The symbol ysp(k + p|k) stands for the setpoint

value of the controlled variable for the sampling instant k + p known at the current instant k. The

prediction is computed from a dynamical model of the considered process. The second part of the

function J2(k) measures the squared changes of the manipulated variable; λ > 0 is a penalty coefficient.

The role of the penalty term is twofold. Firstly, it is used to reduce unfavorable abrupt and huge changes

of the manipulated variable. Secondly, the quadratic penalty term leads to good numerical properties

of the whole MPC optimization task (2).

An alternative, custom, user-defined cost function is used to measure the predicted control errors.

The following form is postulated

Jc(k) =
N∑
p=1

F (ysp(k + p|k)− ŷ(k + p|k)) + λ

Nu−1∑
p=0

(4u(k + p|k))2 (5)

The custom function F : R → R may be defined analytically, employing an explicit mathematical

formula, or in a graphical form. In both cases, a differentiable approximation of that function is used

as it is explained next. The penalty term deliberately has the classical quadratic norm, i.e., to reduce

unwanted moves of the process input variable and get good numerical properties.

The majority of applications use the quadratic L2 cost function. Provided that linear models are

used, the L1 cost function [6, 17] and the L∞ one [23] are possible. As pointed out in [5], the L1 cost

function gives better control quality compared with the typically used L2 function. The algorithms

presented in this work have two features: a custom cost function is used and prediction is computed

from a nonlinear model, not a linear one. The role of a custom function is to weigh the predicted

errors depending on the value of the error. For example, different costs may be used for negative and

positive errors or different costs are possible for some specific errors.

Let us note that the number of decision variables of the optimization task (2) is always equal to

Nu, regardless of the type of cost function used ((4) or (5)).

The process control diagram is sketched in Fig. 1. At each discrete sampling instant, for the given

setpoint trajectory vector ysp(k), the optimization procedure calculates the set of increments 4u(k)

that minimizes the cost function J(k) subject to the existing constraints. The optimization procedure

requires the predictions of the controlled variable, denoted as the vector ŷ(k), that correspond to the

currently calculated decision vector 4u(k). A dynamical process model finds successively online the

predicted trajectory. Some past measurements of process signals are necessary during optimization

and prediction.
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Figure 1: The process control diagram

3 Computationally Efficient MPC Using a Custom Cost Function

From the general MPC problem (2) and using the Lc cost function (5), the rudimentary MPC-Lc

optimization task is

min
4u(k)

{
Jc(k) =

N∑
p=1

F (ysp(k + p|k)− ŷ(k + p|k))

+ λ

Nu−1∑
p=0

(4u(k + p|k))2
}

s. t. (6)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N

ŷ(k + p|k) = fmodel(k + p|k) + d(k), p = 1, . . . , N

This work assumes that the model used for prediction computation and the function F are nonlinear.

That means that the first part of the custom cost function Jc(k) is nonlinear in terms of the MPC

decision vector 4u(k). Due to model nonlinearity, the last two constraints are also nonlinear in terms

of that vector. Furthermore, that also means that the rudimentary MPC-Lc optimization problem

(6) is nonlinear. Hence, a nonlinear optimization procedure must be utilized at each sampling instant

to calculate the decision vector. A computationally simpler alternative is explored next in which a

sophisticated online linearization is carried out. As a result, a quadratic optimization task is obtained,

with no need for nonlinear optimization. During derivation, we will remember that for linearization,

differentiability is necessary. As we do not restrict the function F in any way, differentiability must

be assured by the approximator of the rudimentary function F . Moreover, model differentiability is

required.
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3.1 Cost Function Approximator

In this work, it is postulated not to use directly the custom MPC cost function in the first part of the

performance index (5) but its approximation. There are two reasons for that. Firstly, we will find a

universal representation of different cost functions that is convenient for online use in MPC. Secondly,

when the function F is given in a non-parametric graphical way, an approximator is a natural solution.

We will only use approximators that assure differentiability. We require that the approximator satisfies

the general equation

(α(e(k + p|k)))2 = F (e(k + p|k)) (7)

for p = 1, . . . , N , where

e(k + p|k) = ysp(k + p|k)− ŷ(k + p|k) (8)

stands for the future control error for the time step k + p computed at the current instant k. The

predictions ŷ(k+p|k) are determined from Eq. (3). The approximator’s output for the sampling instant

k + p is α(e(k + p|k)). Using Eqs. (5) and (7), the cost function Jc(k) becomes

Jc(k) =
N∑
p=1

(α(e(k + p|k)))2 + λ

Nu−1∑
p=0

(4u(k + p|k))2 (9)

It is essential to explain why the first part of the cost function (9) has a particular form, i.e., the

predicted control errors are valued by the function α first and next, the results are squared. It is because

in both parts of the custom cost function, squared terms are used, as in the classical cost function

J2(k) defined by Eq. (4). Let us remind that if the model utilized for prediction is linear with constant

parameters or time-varying but linear in parameters, the use of the classical cost function J2(k)

simplifies derivations as we can yield simple to solve quadratic programming tasks, e.g., [19, 20, 34]. A

similar idea is used in this work, but in a sophisticated manner. In our case, the fundamental difficulty

is that the control errors are measured with the nonlinear function α.

Two classes of differentiable approximators are defined and used in simulations presented next. A

simple polynomial approximator is defined by

α(e(k + p|k)) = w0 +
n∑

i=1

wi(e(k + p|k))i (10)

Coefficients of the polynomial are denoted by w0, . . . , wn, n is the degree of the polynomial. We also

use a neural approximator. For this purpose, the Multi-Layer Perceptron (MLP) neural network [13]

is utilized. Such an approximator consists of two layers: the first one is nonlinear with K nodes, the

second one is linear. The neural approximator is

α(e(k + p|k)) = w2
0 +

K∑
i=1

w2
i tanh

[
w1
i,0 + w1

i,1e(k + p|k)
]

(11)

The network’s weights are w1
i,0, w

1
i,1, w

2
i for i = 1, . . . ,K and w2

0. The tanh activation function is used

in this work, which means that the neural approximator is differentiable. Although the network (11)

uses the tanh activation function, other differentiable alternatives are possible. Polynomial and MLP

neural approximators are described in this work; details of MPC algorithms for these two structures
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are given. Both approximator structures are quite simple and they are utilized online in a fairly simple

way. As it will be shown next, they offer very different approximation quality and resulting control

quality. In addition to polynomial and neural approximators of the MLP type, we may use numerous

other options such as Support Vector Machines or Radial Basis Function (RBF) neural networks.

The approximator is obtained from an identification procedure. For a given set of data points, i.e.,

the values of e and F (e), the approximator’s parameters are calculated. The type of the algorithm used

for this purpose depends on the approximator’s structure. For polynomial approximators, or, in general,

for approximators which are linear-in-parameters functions of the error e, the simple least-squares

problem is obtained, which is easily solved analytically. Similarly, for RBF approximators with fixed

parameters of the basis functions, we also obtain least-squares problems. Conversely, training of MLP

neural networks requires nonlinear optimization, which must be done numerically, not analytically. In

this work, the Levenberg-Marquardt algorithm is used for training neural approximators.

3.2 Linearization of the Trajectory α(k)

We have to perform online linear approximations of two trajectories: the trajectory of the predicted

control errors weighted by the function α (the trajectory α(k)) and the trajectory of the predicted

values of the controlled variable (the trajectory ŷ(k)). Linearizations will allow to substitute the

complex nonlinear optimization with quadratic programming. In general, multiple solutions (minima)

are possible in nonlinear optimization, while a quadratic task has only one (global) solution. That

dramatically simplifies the online computational procedure.

The custom cost function Jc(k), in which the polynomial (Eq. (10)) or the neural (Eq. (11))

approximator is used, is given by Eq. (9). Due to nonlinearity of the process and nonlinear nature of the

cost function, the whole function Jc(k) depends in a nonlinear way on the MPC decision vector 4u(k)

(Eq. (1)). To solve the problem, we will adopt and extend the general trajectory linearization method

discussed in [20] for the Wiener class of dynamical systems. However, in our case linearization is much

more difficult since we have to find a linear approximation of the predicted control errors measured

by the nonlinear function α. The objective is to find a linear approximation of the approximator

output, i.e., the signal α(e(k+p|k)), for the whole prediction horizon, i.e., for all p = 1, . . . , N . It leads

to a quadratic custom cost function Jc(k). Using the vector notation, we expect to derive a linear

approximation of the vector

α(k) = [α(e(k + 1|k)) . . . α(e(k +N |k))]T (12)

The linearized substitute for the trajectory α(k) is found not in a simple way, for a past or current

operating point of the process, but along a future trajectory of the process input

utraj(k) =
[
utraj(k|k) . . . utraj(k +Nu − 1|k)

]T
(13)

The trajectory utraj(k) plays the role of the linearization point in scalar linearization. The assumed

trajectory should be close to the true future process trajectory, which is, of course, unknown at

the time instant k. A straightforward guess of that trajectory is to define it using the manipulated

variable applied at the previous sampling instant or the elements of the optimal solution of the MPC
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optimization task derived at the previous sampling instant. Example choices of the trajectory utraj(k)

are discussed in the last part of Section 3.4. Taylor series expansion is applied to find the linearized

substitute for the nonlinear function α(e(k + p|k)). The consecutive elements of the vector (12) are

obtained from

α(e(k + p|k)) = α(etraj(k + p|k)) (14)

+

Nu−1∑
r=0

∂α(etraj(k + p|k))

∂utraj(k + r|k)
(u(k + r|k)− utraj(k + r|k))

for all p = 1, . . . , N . Let us note that the future values of the input process variable, u(k + r|k) for

r = 0, . . . , Nu − 1, are the arguments of the linear approximations of the functions α(e(k + p|k)).

Conversely, the quantities utraj(k + r|k) are fixed numbers, they define the trajectory utraj(k) (Eq.

(13)) which is utilized for linearization. The control errors for the trajectory utraj(k) are determined

from Eq. (8) which gives

etraj(k + p|k) = ysp(k + p|k)− ŷtraj(k + p|k) (15)

where the values ŷtraj(k + p|k) for all p = 1, . . . , N are derived using a dynamical process model

embedded in MPC, using the trajectory utraj(k) and the general prediction equation (3), i.e.

ŷtraj(k + p|k) = f trajmodel(k + p|k) + d(k) (16)

The quantities α(etraj(k+ p|k)) over the whole prediction horizon are found from the controller errors

etraj(k + p|k) and a chosen type of the approximator, e.g., given by Eq. (10) or Eq. (11). The partial

derivatives in Eq. (14) are numbers; they are computed for the particular structure of the approximator

used. In the case of the polynomial approximator (10), we have

∂α(etraj(k + p|k))

∂utraj(k + r|k)
= −

n∑
i=1

iwi

(
etraj(k + p|k)

)i−1 ∂ŷtraj(k + p|k)

∂utraj(k + r|k)
(17)

for p = 1, . . . , N and r = 0, . . . , Nu − 1. The MLP neural approximator (11) with the tanh function

used in the hidden layer requires the formula

∂α(etraj(k + p|k))

∂utraj(k + r|k)
= −

K∑
i=1

w1
i,1w

2
i

(
1− (tanh(ztraji (k + p|k)))2

) ∂ŷtraj(k + p|k)

∂utraj(k + r|k)
(18)

The consecutive inputs of hidden nodes, i.e., for i = 1, . . . ,K, for the trajectory utraj(k), are

ztraji (k + p|k) = w1
i,0 + w1

i,1(y
sp(k + p|k)− ŷtraj(k + p|k)) (19)

For convenient derivations, the matrix-vector notation is utilized in place of the scalar one. Using

Eq. (14), the vector of the linearized approximator’s outputs over the whole prediction horizon used,

i.e., the vector (12), becomes

α(k) = α(etraj(k)) +
dα(etraj(k))

dutraj(k)
(u(k)− utraj(k)) (20)
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Similarly to Eq. (12), the vector of the approximator’s outputs for the chosen trajectory utraj(k) is

α(etraj(k)) =
[
α(etraj(k + 1|k)) . . . α(etraj(k +N |k))

]T
(21)

The partial derivatives comprise the following N ×Nu matrix

dα(etraj(k))

dutraj(k)
=


∂α(etraj(k + 1|k))

∂utraj(k|k)
· · · ∂α(etraj(k + 1|k))

∂utraj(k +Nu − 1|k)
...

. . .
...

∂α(etraj(k +N |k))

∂utraj(k|k)
· · · ∂α(etraj(k +N |k))

∂utraj(k +Nu − 1|k)

 (22)

The independent variable vector of length Nu in Eq. (20) is

u(k) = [u(k|k) . . . u(k +Nu − 1|k)]T (23)

It is easily calculated from the corresponding vector of increments 4u(k) (Eq. (1))

u(k) = J4u(k) + u(k − 1) (24)

The Nu × Nu matrix J has its all diagonal and below-diagonal entries equal to 1 while all above-

diagonal entries are 0. The Nu × 1 vector is u(k − 1) = u(k − 1) [1 . . . 1]T. Using the simple relation

between u(k) and 4u(k) defined by Eq. (24), the linearized trajectory of the approximator’s output

over the entire prediction horizon (Eq. (20)) becomes

α(k) =
dα(etraj(k))

dutraj(k)
J4u(k) +α(etraj(k)) +

dα(etraj(k))

dutraj(k)
(u(k − 1)− utraj(k)) (25)

We clearly see that the linearized trajectory α(k) is really a linear function of the MPC decision vector

4u(k). It means that the custom cost function (9) is a quadratic function of that vector.

3.3 Linearization of the Trajectory ŷ(k)

Due to nonlinearity of the process, the constraints put on the predicted controlled variable in the

rudimentary MPC optimization task (6) depend in a nonlinear way on the MPC decision variable vector

4u(k) (Eq. (1)). To formulate a quadratic optimization task, linear approximations of these constraints

must be also found. Once again, we use the general trajectory linearization method discussed in [20],

but now we have to find a linear approximation of the vector of the controlled variable over the

prediction horizon, i.e., the vector

ŷ(k) = [ŷ(k + 1|k)) . . . ŷ(k +N |k))]T (26)

Linearization is determined along the trajectory utraj(k) defined by Eq. (13). We use a similar mathod

that is used for linearization of the trajectory α(k) defined by Eq. (12). Similarly to the vector (20),

the linearized predicted trajectory in terms of the future values of the manipulated process input, i.e.,

the vector u(k), is

ŷ(k) = ŷtraj(k) +
dŷtraj(k)

dutraj(k)
(u(k)− utraj(k)) (27)
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where the predicted vector of the controlled process output related to the trajectory utraj(k) is

ŷtraj(k) =
[
ŷtraj(k + 1|k)) . . . ŷtraj(k +N |k))

]T
(28)

and the partial derivatives comprise the N ×Nu matrix, which is similar to the matrix (22)

dŷtraj(k))

dutraj(k)
=


∂ŷtraj(k + 1|k)

∂utraj(k|k)
· · · ∂ŷtraj(k + 1|k)

∂utraj(k +Nu − 1|k)
...

. . .
...

∂ŷtraj(k +N |k)

∂utraj(k|k)
· · · ∂ŷtraj(k +N |k)

∂utraj(k +Nu − 1|k)

 (29)

Using Eq. (24), it is easy to express the linearized predicted trajectory of the process output variable

in terms of the decision vector of MPC

ŷ(k) =
dŷtraj(k)

dutraj(k)
J4u(k) + ŷtraj(k) +

dŷtraj(k)

dutraj(k)
(u(k − 1)− utraj(k)) (30)

Similarly to Eq. (25), we clearly see that the linearized trajectory ŷ(k) is also a linear function of the

MPC optimal solution vector 4u(k).

The MPC formulation recommended in this work relies on trajectory linearization, i.e., the linear

approximations of the trajectories α(k) and ŷ(k) are directly carried out. Some computationally

efficient MPC algorithms [20, 31] apply model linearization at each sampling instant and the linearized

model serves for finding the predicted trajectories. As shown in [20], direct trajectory linearization

typically gives better control quality of MPC than model linearization. It is because model linearization

is performed for the past measurements of manipulated and controlled variables, the current controlled

value is also utilized. Conversely, trajectory linearization is computed for a future trajectory of the

manipulated variable.

3.4 Formulation of the MPC Optimization Task

Using the approximator in the first part of the custom cost function (9) and having found the linearized

trajectories (25) and (30), from the basic task (6), we obtain the quadratic optimization problem

min
4u(k)

{
Jc(k) =

∥∥∥∥∥dα(etraj(k))

dutraj(k)
J4u(k) +α(etraj(k))

+
dα(etraj(k))

dutraj(k)
(u(k − 1)− utraj(k))

∥∥∥∥∥
2

+ ‖4u(k)‖2Λ

}
s. t. (31)

umin ≤ J4u(k) + u(k − 1) ≤ umax

4umin ≤ 4u(k) ≤ 4umax

ymin ≤ dŷtraj(k)

dutraj(k)
J4u(k) + ŷtraj(k)

+
dŷtraj(k)

dutraj(k)
(u(k − 1)− utraj(k)) ≤ ymax

11



The Nu × Nu matrix is Λ = λdiag(1, . . . , 1); the Nu × 1 vectors are: umin = umin [1 . . . 1]T, umax =

umax [1 . . . 1]T, 4umin = 4umin [1 . . . 1]T and 4umax = 4umax [1 . . . 1]T; the N × 1 vectors are: ymin =

ymin [1 . . . 1]T and ymax = ymax [1 . . . 1]T. The optimization task’s (31) number of decision variables is

Nu.

Let us note that the last constraints in optimization tasks (2) and (6), constituted by the prediction

equation (3), are nonlinear in terms of the future increments 4u(k). The prediction equation (16),

necessary to compute the trajectory ŷtraj(k), is nonlinear in terms of the assumed trajectory utraj(k),

but is is independent of the vector 4u(k). Hence, it is not used in the set of constraints in the derived

optimization task (31).

The derived task (31) is of the quadratic optimization type as the minimized objective function is

linear in respect to the optimal solution vector4u(k) and all limitations are linear. It means that it has

only one solution, which is the global solution. As far as the feasibility problem (31) is concerned, it is

always feasible, i.e., there exists a non-empty set of possible solutions, provided that there are only the

constraints imposed on the magnitude and rate of change of the manipulated variable. Unfortunately,

the inclusion of the constraints imposed on the predicted controlled variable may result in an empty

feasible set, in particular when the model error is significant and/or an important disturbance affects

the process.

Because the limitations associated with the predicted process output variable are likely to yield an

empty set of possible solutions, these constraints are implemented in the soft version [19, 20, 34]. We

derive the following optimization task in place of the optimization problem (31) with hard constraints

min
4u(k)

εmin(k)
εmax(k)

{
Jc(k) =

∥∥∥∥∥dα(etraj(k))

dutraj(k)
J4u(k) +α(etraj(k))

+
dα(etraj(k))

dutraj(k)
(u(k − 1)− utraj(k))

∥∥∥∥∥
2

+ ‖4u(k)‖2Λ + ρmin(εmin(k))2 + ρmax(εmax(k))2

}
s. t. (32)

umin ≤ J4u(k) + u(k − 1) ≤ umax

4umin ≤ 4u(k) ≤ 4umax

ymin − εmin(k) ≤ dŷtraj(k)

dutraj(k)
J4u(k) + ŷtraj(k)

+
dŷtraj(k)

dutraj(k)
(u(k − 1)− utraj(k)) ≤ ymax + εmax(k)

εmin(k) ≥ 0, εmax(k) ≥ 0

The additional positive calculated variables εmin(k) and εmax(k) temporarily modify the original hard

constraints which enlarges the admissible set. The N × 1 vectors are: εmin(k) = εmin(k) [1 . . . 1]T and

εmax(k) = εmax(k) [1 . . . 1]T. The number of optimization task’s (32) decision variables is Nu + 2. The

obtained MPC optimization task (32) with soft output constraints is always feasible, i.e., the set of

possible solutions is never empty, which is enforced by the variables εmin(k) and εmax(k). As the cost

12



function is quadratic and all constraints are linear in terms of the decision variables (4u(k), εmin(k)

and εmax(k)), the obtained MPC optimization task has only one global solution.

Next, we must transform the MPC optimization task with soft constraints (32) to the classical

quadratic optimization form. The new (nuNu + 2)× 1 vector of the optimal solution is

x(k) =
[
4uT(k) εmin(k) εmax(k)

]T
(33)

The auxiliary matrices given below

N1 =
[
INu×Nu 0Nu×2

]
(34)

N2 =
[

01×Nu I1×1 01×1

]
(35)

N3 =
[

01×(Nu+1) I1×1

]
(36)

are of dimensionality Nu× (Nu +2), 1× (Nu +2) and 1× (Nu +2), respectively. The matrices (34)-(36)

are used to determine the vector of the MPC original optimal solution and the additional quotients

that enlarge the feasible set from the vector of decision variables x(k)

4u(k) = N1x(k) (37)

εmin(k) = N2x(k) (38)

εmax(k) = N3x(k) (39)

For further transformations, the vectors εmin(k) and εmax(k) are rewritten

εmin(k) = IN×1 ⊗ εmin(k) (40)

εmax(k) = IN×1 ⊗ εmax(k) (41)

where the operator ⊗ stands for the vector Kronecker product. From Eqs. (38)-(39) and (40)-(41), we

get

εmin(k) = IN×1 ⊗N2x(k) (42)

εmax(k) = IN×1 ⊗N3x(k) (43)

The standard quadratic programming problem is

min
x(k)

{
0.5xT(k)HQP(k)x(k) + fT

QP(k)x(k)
}

s. t. (44)

A(k)x(k) ≤ b(k)

Using Eqs (37), (42) and (43), the quadratic optimization problem (32) is rewritten using only the

decision vector x(k)

min
x(k)

{
Jc(k) =

∥∥∥∥∥dα(etraj(k))

dutraj(k)
JN1x(k) +α(etraj(k))
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+
dα(etraj(k))

dutraj(k)
(u(k − 1)− utraj(k))

∥∥∥∥∥
2

+ ‖N1x(k)‖2Λ + ρmin(N2x(k))2 + ρmax(N3x(k))2

}
s. t. (45)

umin ≤ JN1x(k) + u(k − 1) ≤ umax

4umin ≤N1x(k) ≤ 4umax

ymin − IN×1 ⊗N2x(k) ≤ dŷtraj(k)

dutraj(k)
JN1x(k) + ŷtraj(k)

+
dŷtraj(k)

dutraj(k)
(u(k − 1)− utraj(k)) ≤ ymax + IN×1 ⊗N3x(k)

ŷtraj(k + p|k) = f trajmodel(k + p|k) + d(k), p = 1, . . . , N

N2x(k) ≥ 0, N3x(k) ≥ 0

Having differentiated the cost function Jc(k) in (45), we have

dJc(k)

dx(k)
= 2NT

1 J
T

(
dα(etraj(k))

dutraj(k)

)T
(

dα(etraj(k))

dutraj(k)
JN1x(k) +α(etraj(k))

+
dα(etraj(k))

dutraj(k)
(u(k − 1)− utraj(k))

)
+ 2NT

1 ΛTN1x(k) + 2ρminNT
2N2x(k) + 2ρmaxNT

3N3x(k) (46)

From Eq. (46), it is straightforward to read the hessian matrix necessary in the quadratic optimization

task (44) is

HQP(k) = 2NT
1 J

T

(
dα(etraj(k))

dutraj(k)

)T
dα(etraj(k))

dutraj(k)
JN1

+ 2NT
1 ΛTN1 + 2ρminNT

2N2 + 2ρmaxNT
3N3 (47)

The vector fQP(k) is

fQP(k) = 2NT
1 J

T

(
dα(etraj(k))

dutraj(k)

)T(
α(etraj(k)) +

dα(etraj(k))

dutraj(k)
(u(k − 1)− utraj(k))

)
(48)

The limitations subject to which optimization is performed are specified by the matrix

A(k) =



−JN1

JN1

−IN×1 ⊗N2 − dŷtraj(k)
dutraj(k)

JN1

−IN×1 ⊗N3 + dŷtraj(k)
dutraj(k)

JN1

−N1

N1

−N2

−N3


(49)
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and the vector

b(k) =



−umin + u(k − 1)

umax − u(k − 1)

−ymin + ŷtraj(k) + dŷtraj(k)
dutraj(k)

(u(k − 1)− utraj(k))

ymax − ŷtraj(k)− dŷtraj(k)
dutraj(k)

(u(k − 1)− utraj(k))

−4umin

4umax

0

0


(50)

Let us compare the discussed MPC methods with state-space feedback control methods. Firstly, the

derivation presented in this work is concerned with input-output models, while feedback control utilizes

state-space models. A modification of the presented MPC approach to deal with state-space process

description is possible. Secondly, the classical state-space control methods rely on linear models while

nonlinear ones are considered in this work. Nonlinear state-space control methods have been developed

recently for specific model structures, e.g., [36, 37]. Conversely, the model structure and properties

of the model considered in this work are not limited; the only requirement is model differentiability;

for non-differentiable models, the presented approach does not work. Thirdly, the classical state-

space control methods frequently neglect constraints (extensions are necessary to use constraints, e.g.,

[36, 37]) while the described MPC approach allows to use different kinds of constraints on manipulated

and controlled variables. Finally, the described MPC algorithms use online quadratic optimization,

not explicit control laws. It may turn out that the use of the state-space feedback control laws requires

a shorter time than optimization. Of course, it depends on the performance of the hardware used for

algorithm implementation.

Fig. 2 shows flowcharts of two discussed MPC algorithms, i.e., organization of calculations per-

formed at each time step. We name two algorithms:

1. MPC-NPLT-Lc: the MPC algorithm with Nonlinear Prediction and Linearization along the

Trajectory using the Lc norm. The following calculations are performed at each sampling step:

(a) At first, the algorithm calculates the predicted trajectories α(etraj(k)) (Eq. (21)) and

ŷtraj(k) (Eq. (28)) for the assumed trajectory utraj(k) (Eq. (13)) using Eqs. (15) and (16),

respectively. A dynamical model of the process chosen by the user is used to determine the

predictions.

(b) Secondly, linear approximations of the trajectories α(k) (Eq. (12) and ŷ(k) (26) are com-

puted from Eqs. (25) and (30), respectively. Linearization of both trajectories is performed

using the chosen dynamical model. In particular, the partial derivatives (22) and (29) are

calculated for the model used.

(c) Finally, the algorithm solves the quadratic optimization task (45) and sends the first element

of the obtained vector to the process.

Three variants of the algorithm are used: MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-

Lc. The difference is the way the trajectory utilized during linearization (Eq. (13)) is chosen.
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Figure 2: Flowcharts of two discussed MPC algorithms
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In the first case, its all elements are the same as the manipulated variable just recently used,

i.e., u(k − 1). In the second one, that trajectory is defined by the last Nu − 1 elements of

the optimal solution computed at the sampling instant k − 1. The third alternative is to use

an inverted static process model to define every element of the trajectory by the manipulated

variable corresponding to the current setpoint.

2. MPC-NPLPT-Lc: the MPC algorithm with Nonlinear Prediction and Linearization along the

Predicted Trajectory using the Lc norm. The following calculations are performed at each sam-

pling step:

(a) Initially, the algorithm calculates the predicted trajectories α(etraj(k)) and ŷtraj(k) and

linear approximations of the trajectories α(k) and ŷ(k) for the assumed trajectory utraj(k),

exactly in the same way it is done in the MPC-NPLT-Lc method.

(b) The quadratic optimization task (45) is solved for the first time.

(c) The above calculations may be repeated in internal iterations in which the trajectory

utraj(k) is defined using the optimal solution of the MPC optimization task performed

at the previous internal iteration. Such iterations are started if the predicted value of the

controlled variable is reasonably different from its actual value. The iterations are stopped

when the solutions of the MPC optimization task in two successive iterations are close or

the possible number of iterations is exceeded.

4 Simulations

4.1 Process Description

Properties of the presented above approach to MPC are demonstrated for a neutralization reactor

process [10]. Because of its nonlinear static and dynamic behavior, this process is very frequently

utilized as a benchmark in model identification tasks and nonlinear control, e.g., [10, 11, 14, 20].

A base (NaOH) stream flow rate q1 (ml/s) is the manipulated variable, the value of the pH is the

controlled process output.

4.2 Process Modeling for MPC

In simulations the results of which are discussed next, the fundamental model based on first principles

of the reactor [10] is used. Conversely, in all MPC algorithms, a Wiener model of the process is used.

Its linear dynamic block is

v(k) = b1u(k − 1) + b2u(k − 2)− a1v(k − 1)− a2v(k − 2) (51)

where v is an auxiliary model variable, the nonlinear static block is

y(k) = gstatic(v(k)) (52)

The gstatic : R→ R scalar function is represented by a two layered neural network with five nonlinear

sigmoid units in the first layer. Identification and validation of the model defined by Eqs. (51)-(52) is
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thoroughly discussed in [20]. The sampling time of the model, equal to the sampling time of MPC, is

10 seconds. Process variables are scaled: u = q1− q̄1, y = pH−pH where for the initial point q̄1 = 15.5

and pH = 7.

4.3 Implementation Details of the Computationally Efficient Nonlinear MPC Al-

gorithm Using the Custom Cost Functions

During linearization of the trajectory α(k), the elements of the derivative matrix (22) are computed

from Eqs. (17) and (18) for the polynomial and neural approximators, respectively. The partial deriva-

tives of the predicted controlled variable used in Eqs. (17) and (18) and in the matrix (29) that is

necessary during linearization of the trajectory ŷ(k) are found for the particular type of the model

defined by Eqs. (51)-(52) as detailed in [20].

4.4 Simulation Results and Discussion

In simulations, we will compare the following MPC methods:

1. MPC-NO-Lc: the MPC approach with Nonlinear Optimization using the Lc norm. The under-

lying general nonlinear task is constituted by Eq. (2), but the soft constraints are put on the

controlled variable, as in the formulation (32). Although nonlinear optimization is computation-

ally expensive and nonlinear solvers are significantly more complex than quadratic ones, the

MPC-NO-Lc method is a reference to assess the linearization-based MPC algorithms.

2. MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-Lc: three versions of the MPC-NPLT-Lc

algorithm using the Lc norm. The quadratic optimization task is given by Eq. (32). In the last

variant, the trajectory utilized during linearization (Eq. (13)) is determined from an inverse

static model represented by a two-layered MLP neural structure; ten hidden tanh nodes are

used.

3. MPC-NPLPT-Lc with the Lc norm. At each execution of the algorithm, initially, the trajectory

used for linearization is obtained from the inverse static model (as in the MPC-NPLT3-Lc ap-

proach). The obtained solution is used for possible consecutive linearization; five such repetitions

are possible.

4. MPC-NPLPT-L2: the algorithm with the classical L2 norm and multiple trajectory linearizations

at one sampling instant.

In all versions of MPC algorithms, the same set of parameters is used: the horizon N is 10, the

horizon Nu is 3, the weight λ is 1. The prediction horizon and the weight λ have been tuned to

obtain stable process operation even in the case of modeling errors and additional disturbances (as

shown in Section 4.4.7). These two parameters are typically used to obtain stability in practice [34].

To guarantee stability, it is recommended to use the described MPC algorithms supplemented by an

additional stabilizing controller that works in the neighborhood of the equilibrium points (the dual-

mode MPC approach) [19]. The minimal and maximal box limits put on the process input are 0 and
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Figure 3: The custom cost functions F1 and F2

30, respectively. They are taken into account in all simulation scenarios and all algorithms. The limits

put on the process output are only considered in Section 4.4.6.

In this work, two custom cost functions are used. They are characterized by the following analytical

expressions (exact functions)

F1(e) =

10e2 if e ≤ 0

10e3 if e > 0
(53)

and

F2(e) =


e4 + 1.1875 if e < −0.5

5e2 if −0.5 ≤ e < 0.5

e4 + 1.1875 if e ≥ 0.5

(54)

Both functions are sketched in Fig. 3.

The following part of the simulation section demonstrates different aspects of the approximators

and MPC algorithms.

4.4.1 Accuracy of Neural and Polynomial Approximation of Custom Cost Functions

At first, the efficacy of neural and polynomial approximation of the cost functions is discussed. Both

classes of approximators are used in MPC. Fig. 4 presents the cost function F1 vs. its neural and poly-

nomial approximations. The MLP network with ten tanh hidden nodes is used; the polynomials of the

degree n = 2, 3, 4, 5, 6 are considered. For each configuration of the approximator, the approximation

error is also drawn. In general, the higher the degree of the polynomial approximator, the better its

accuracy. Unfortunately, even the most complex polynomial is characterized by much greater errors

when compared with the neural one. Of note, the accuracy of the neural approximator is excellent.

Fig. 5 compares the cost function F2 vs. its approximations. The MLP network with ten tanh hidden

nodes is used. The symmetric shape of the cost function indicates that polynomials of the even degree

should be considered; the results for n = 2, 4, 6, 8, 10 are compared. The polynomial approximation
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for the second cost function is worse than in the first case. We may observe that the increment of the

polynomial degree has a minimal effect on its accuracy. The approximation error is large even for the

most complex polynomial (n = 10). Conversely, the accuracy of the neural approximator is excellent.
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Figure 4: The custom cost function F1 vs. its neural and polynomial approximations; approximation

errors are also given
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errors are also given
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4.4.2 Efficiency of the MPC-NO-Lc Approach: Neural vs. Polynomial Approximation

The MPC-NO-Lc algorithm is first evaluated with neural and polynomial approximators. We expect

that the use of an approximator results in a process trajectory the same or very similar to the case

when the analytical exact cost functions, defined by Eqs. (53) and (54), are utilized. The basic question

is which approximator type can efficiently replace the rudimentary exact cost function.

Figs. 6 and 7 depict the simulated process trajectories for the MPC-NO-Lc algorithm in which the

exact cost functions F1 and F2 and their neural approximators are used, respectively. Similarly, Figs.

8 and 9 compares the trajectories when the exact cost functions and their polynomial approximators

of different degrees are used. We can observe that the neural approximators give excellent results as

the trajectories are practically the same as those when the exact cost functions are used. That is the

expected result. Unfortunately, the polynomial approximators give much worse results. Of course, the

higher the degree of the approximators’ polynomial, the better the control, but it is much worse than

when the neural approximator is used. Interestingly, the MPC algorithm is sensitive to the inaccuracy

of the approximator. Although in the case of the cost function F1, for a high degree of the polynomial,

approximation accuracy is not bad as shown in Fig. 4 but when such an approximation is used in

MPC, as shown in Fig. 8, the control quality is below expectations. Hence, the neural approximators

are only used in the following simulation, not the polynomial one.
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Figure 6: The process trajectories: the MPC-NO-Lc control scheme using the exact custom cost func-

tion F1 vs. the MPC-NO-Lc algorithm using the neural approximation
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Figure 7: The process trajectories: the MPC-NO-Lc method using the exact custom cost function F2

vs. the MPC-NO-Lc algorithm using the neural approximation
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Figure 8: The process trajectories: the MPC-NO-Lc control scheme using the exact custom cost func-

tion F1 vs. the MPC-NO-Lc algorithm using the polynomial approximation; n stands for the polyno-

mial degree
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Figure 9: The process trajectories: the MPC-NO-Lc method using the exact custom cost function F2

vs. the MPC-NO-Lc approach using the polynomial approximation; n stands for the polynomial degree

4.4.3 Efficiency of MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-Lc methods (with

One Trajectory Linearization at Each Sampling Instant) and Neural Approxima-

tion

Figs. 10 and 11 presents simulation results of the MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-

Lc algorithms with one trajectory linearization at each execution of the MPC and the neural approx-

imation of the custom cost functions F1 and F2, respectively; the algorithms differ in the way the

trajectory for linearization is chosen, initialized and then updated at every discrete time instant. For

the first custom cost function, F1, the first initialization method gives not good results, particularly

for the first two setpoint changes. The third initialization method is the best one. For the second

custom cost function, F2, the second initialization method fails for the second setpoint change (it may

be rectified by increasing the penalty factor λ, but it would slow down control). The first initialization

method gives slightly slower trajectories for the first, the third and the fourth setpoint changes. Hence,

the MPC-NPLT3-Lc algorithm is selected for further comparison. It turns out that for the considered

neutralization system, the trajectory for linearization should be defined by the manipulated variable’s

value related to the setpoint.
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Figure 10: The process trajectories: the MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-Lc ap-

proaches using the neural approximation of the custom cost function F1
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Figure 11: The process trajectories: the MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-Lc meth-

ods using the neural approximation of the custom cost function F2
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4.4.4 Efficiency of the MPC-NPLPT-Lc Control Scheme (with Multiple Trajectory Lin-

earizations) and Neural Approximation

Figs. 12 and 13 depict the results of simulations for the following three algorithms: MPC-NO-Lc, MPC-

NPLT3-Lc and MPC-NPLPT-Lc; in all cases the neural approximations of the custom cost functions

F1 and F2, respectively, are used. From the presented results, we find out that multiple linearization

at each time step (MPC-NPLPT-Lc) produces slightly better outcomes than the MPC-NPLT3-Lc

scheme with one linearization but the differences are really insignificant. Of course, for other processes

multiple linearization is likely to be necessary [20]. Moreover, the trajectories in the MPC-NPLT3-Lc

and MPC-NPLPT-Lc methods with quadratic optimization are very similar to that possible in the

reference MPC-NO-Lc scheme requiring nonlinear optimization.
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Figure 12: The process trajectories: the MPC-NO-Lc, MPC-NPLT3-Lc and MPC-NPLPT-Lc method

using the neural approximation of the custom cost function F1
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Figure 13: The process trajectories: the MPC-NO-Lc, MPC-NPLT3-Lc and MPC-NPLPT-Lc algo-

rithms using the neural approximation of the custom cost function F2

4.4.5 The MPC-NPLPT-Lc Method with the Custom Cost Function vs. the MPC-

NPLPT-L2 Algorithm with the Classical L2 Norm

Figs. 14 and 15 compare the MPC-NPLPT-Lc control method in which the neural approximation of

the custom cost functions F1 and F2, respectively, is used with the MPC-NPLPT-L2 algorithm in

which the classical cost function L2 is applied. We can easily observe that the use of custom cost

functions results in different trajectories of both manipulated and controlled variables when compared

with the classical L2 cost function. In particular, for two considered custom cost functions F1 and F2,

control quality is better since the process output faster reaches its setpoint. Moreover, in the case of

the cost function F2, overshoot is lower.
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Figure 14: The process trajectories: the MPC-NPLPT-Lc algorithm using the neural approximation

of the custom cost function F1 and the MPC-NPLPT-L2 algorithm using the classical cost function

L2
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Figure 15: The process trajectories: the MPC-NPLPT-Lc algorithm using the neural approximation

of the custom cost function F2 and the MPC-NPLPT-L2 algorithm using the classical cost function

L2
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The results presented above in figures are compared numerically in Tables 1 and 2. The first of

the considered quality indexes measures summarized squared control errors

E2 =

kmax∑
k=kmin

(ysp(k)− y(k))2 (55)

where y(k) is the process output’s value, kmin and kmax indicate the range of simulation horizon. The

second of the control performance indexes corresponds with the custom cost function F

Ec =

kmax∑
k=kmin

F (ysp(k)− y(k)) (56)

Let us note that the indicators E2 and Ec are not actually optimized in MPC, but they are calculated

afterward. The MPC cost function has two parts; they are minimized over the prediction and control

horizons. Interestingly, the custom cost function gives better results in terms of the performance index

Ec and the index E2. For the precise neural approximator, the obtained values of E2 are lower when

the custom cost function is used, not the classical quadratic one.

Considering Figs. 6-15 as well as Tables 1 and 2, for cost functions F1 and F2, we observe the

following:

1. In the MPC-NO-Lc approaches, the application of the neural approximator leads to very similar

results as the use of the exact function. Conversely, the polynomial approximator does not give

good results, although high degrees are used.

2. The MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-Lc control methods with one lineariza-

tion and optimization at each sampling instant give good results.

3. The MPC-NPLPT-Lc algorithm with multiple linearizations and optimizations gives practically

the same results as the MPC-NO-Lc method.

4. The MPC-NPLPT-L2 control approach with the classical L2 cost function gives significantly

different (worse) results.

Tables 1 and 2 also specify the calculation time of all algorithms. We find out the following:

1. The MPC-NO-Lc algorithm, no matter the exact cost function is used or its polynomial and

neural approximators, is characterized by the longest calculation time.

2. The MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-Lc algorithms with one repetition of

linearization and optimization are approximately three times faster.

3. The MPC-NPLPT-Lc scheme with multiple repetitions of linearization and optimization needs

a slightly longer calculation time, but it is approximately two times faster than the MPC-NO-Lc

method.

4. As a result of using the neural approximator of the custom cost function, the MPC-NPLPT-Lc

approach is slightly slower than the MPC-NPLPT-L2 algorithm with the simple quadratic cost

function.
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Let us note that the online linearization used in the aforementioned MPC algorithms makes them

computationally efficient in two ways. Firstly, they solve quadratic tasks with only one global minimum,

not nonlinear ones, with possibly multiple local solutions. It is a fundamental difference. Secondly,

quadratic programming is demonstrated to be much faster.

Table 1: Simulation results: comparison of control quality indexes E2 and Ec and the calculation

time for MPC algorithms using the custom cost function F1; for the MPC-NPLPT-L2 algorithm the

classical L2 norm is used

Algorithm Approximator E2 Ec Calculation time

MPC-NO-Lc Exact cost function 1.858× 102 5.816× 103 123.28%

MPC-NO-Lc Neural 1.865× 102 5.882× 103 100.00%

MPC-NO-Lc Polynomial, n = 2 2.778× 102 9.607× 103 81.51%

MPC-NO-Lc Polynomial, n = 3 2.980× 102 1.077× 104 78.77%

MPC-NO-Lc Polynomial, n = 4 2.438× 102 8.090× 103 82.88%

MPC-NO-Lc Polynomial, n = 5 2.132× 102 6.450× 103 87.67%

MPC-NO-Lc Polynomial, n = 6 2.030× 102 6.165× 103 89.73%

MPC-NO-Lc Polynomial, n = 7 1.971× 102 5.957× 103 93.15%

MPC-NPLT1-Lc Neural 1.935× 102 5.996× 103 33.56%

MPC-NPLT2-Lc Neural 1.904× 102 5.995× 103 33.56%

MPC-NPLT3-Lc Neural 1.869× 102 5.916× 103 34.25%

MPC-NPLPT-Lc Neural 1.859× 102 5.872× 103 55.47%

MPC-NPLPT-L2 Exact cost function 2.329× 102 7.048× 103 52.08%

Table 2: Simulation results: comparison of control quality indexes E2 and Ec and the calculation

time for MPC algorithms using the custom cost function F2; for the MPC-NPLPT-L2 algorithm the

classical L2 norm is used

Algorithm Approximator E2 Ec Calculation time

MPC-NO-Lc Exact cost function 1.894× 102 3.319× 103 121.99%

MPC-NO-Lc Neural 1.900× 102 3.329× 103 100.00%

MPC-NO-Lc Polynomial, n = 2 4.377× 102 1.113× 104 63.83%

MPC-NO-Lc Polynomial, n = 4 4.342× 102 1.106× 104 64.54%

MPC-NO-Lc Polynomial, n = 6 3.808× 102 9.588× 103 73.76%

MPC-NO-Lc Polynomial, n = 8 2.968× 102 6.559× 103 73.05%

MPC-NO-Lc Polynomial, n = 10 2.359× 102 4.571× 103 77.31%

MPC-NPLT1-Lc Neural 1.925× 102 3.340× 103 34.75%

MPC-NPLT2-Lc Neural 1.901× 102 3.258× 103 35.46%

MPC-NPLT3-Lc Neural 2.011× 102 3.478× 103 35.46%

MPC-NPLPT-Lc Neural 1.958× 102 3.479× 103 67.08%

MPC-NPLPT-L2 Exact cost function 2.329× 102 3.856× 103 55.03%
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4.4.6 Satisfaction of Constraints Put on Predicted Process Output

Let us consider the cost function F1 and additional constraints the objective of which is to reduce the

overshoot. In order to do it, we have to impose the constraints on the predicted process output. The

quotients ymin and ymax are changed in the following sampling instants as follows

ymin(k) =


6 for 3 ≤ k < 19

5 for 40 ≤ k < 59

4 for 80 ≤ k < 99

(57)

and

ymax(k) =


8 for 20 ≤ k < 39

9 for 60 ≤ k < 79

10 for 100 ≤ k ≤ 120

(58)

The constraints do not exist for the sampling instants other than specified. Of course, we cannot

guarantee that the additional constraints are always satisfied. There are two reasons for that. Firstly,

the constraints rely on predictions characterized by some error since the model is good but not perfect.

Secondly, the additional limitations are implemented as soft, which always guarantees non-empty

feasible set of solutions of the MPC optimization task (45). Weights associated with the additional

penalty terms are: ρmin = ρmax = 103.

Table 3 specifies the control quality indicators E2 and Ec for all considered MPC control techniques

with additional output constraints. We observe the following:

1. The use of the neural approximator in the MPC-NO-Lc algorithm gives excellent results while the

application of polynomials gives poor performance. Increasing the polynomial degree improves

the outcome, but the results are still far from those possible when the neural network is used.

The same is observed when the predicted controlled variables are not constrained (Figs. 6 and

7).

2. When only one trajectory linearization is used at each time step, the the MPC-NPLT1-Lc and

the MPC-NPLT2-Lc algorithms do not work correctly for the first four setpoint steps as depicted

in Fig. 16. Conversely, the MPC-NPLT3-Lc algorithm is much better. It is also true when the

additional constraints are not considered (Figs. 10 and 11).

3. The MPC-NPLPT-Lc algorithm with multiple repetitions of linearization gives somewhat better

outcomes than the MPC-NPLT3-Lc one. The trajectories are shown in Fig. 17.

4. In terms of the performance function Ec, the MPC-NPLPT-L2 control approach with the classical

L2 cost function gives significantly worse results than the MPC-NPLPT-Lc scheme. Fig. 18

confirms that observation; the custom cost function gives faster control. The same is observed

when the predicted controlled variable is not constrained as shown in Figs. 14 and 15.

As far as the calculation time of MPC algorithms is concerned, the additional constraints help to

slightly shorten the calculation time of all MPC algorithms with linearization when compared with

the scenario in which only the manipulated variable is limited, as shown in Tables 1 and 2.
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Table 3: Simulation results when output constraints are utilized: comparison of control quality indexes

E2 and Ec and the calculation time for MPC algorithms using the custom cost function F1; for the

MPC-NPLPT-L2 algorithm the classical L2 norm is used

Algorithm Approximator E2 Ec Calculation time

MPC-NO-Lc Exact cost function 1.805× 102 5.589× 103 120.07%

MPC-NO-Lc Neural 1.795 ×102 5.581× 103 100.00%

MPC-NO-Lc Polynomial, n = 2 2.253× 102 6.317× 103 92.83%

MPC-NO-Lc Polynomial, n = 3 2.272× 102 6.338× 103 93.19%

MPC-NO-Lc Polynomial, n = 4 2.026× 102 5.909× 103 94.27%

MPC-NO-Lc Polynomial, n = 5 1.993× 102 5.867× 103 97.49%

MPC-NO-Lc Polynomial, n = 6 1.916× 102 5.722× 103 97.85%

MPC-NO-Lc Polynomial, n = 7 1.902× 102 5.701× 103 98.92%

MPC-NPLT1-Lc Neural 2.010× 102 5.909× 103 21.51%

MPC-NPLT2-Lc Neural 1.909× 102 5.890× 103 21.15%

MPC-NPLT3-Lc Neural 1.807× 102 5.596× 103 21.15%

MPC-NPLPT-Lc Neural 1.790× 102 5.586× 103 31.96%

MPC-NPLPT-L2 Exact cost function 2.315× 102 7.396× 103 30.53%
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Figure 16: The process trajectories when output constraints are utilized: the MPC-NPLT1-Lc, MPC-

NPLT2-Lc and MPC-NPLT3-Lc algorithms using the neural approximation of the custom cost function

F1
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Figure 17: The process trajectories when output constraints are utilized: the MPC-NO-Lc, MPC-

NPLT3-Lc and MPC-NPLPT-Lc algorithms using the neural approximation of the custom cost func-

tion F1
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Figure 18: The process trajectories when output constraints are utilized: the MPC-NPLPT-Lc control

schemes using the neural approximation of the custom cost function F1 and the MPC-NPLPT-L2

algorithm using the classical cost function L2
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4.4.7 Compensation of Model Errors and Disturbances

A fundamental model of the reactor is used to simulate the process, while a Wiener model of the process

is used in all considered MPC algorithms. Of course, the Wiener model is not perfect; it has some

inaccuracy. Nevertheless, the presented MPC algorithms can compensate for modeling errors since the

required setpoint is always reached in all simulations. Now, let us consider larger model errors and

disturbances. To achieve this, the model static gain is decreased by 10% and an unmeasured additive

unit disturbance affects the process output from the sampling instant 70. The values of the quality

indexes are given in Table 4 and Fig. 19 depicts the trajectories obtained in three example MPC

algorithms. The custom cost function F1 is considered. The following observations are possible:

1. Due to the integral action, all considered MPC algorithms make it possible to achieve the required

setpoint. The influence of the disturbance is very quickly compensated.

2. The MPC-NPLT1-Lc, MPC-NPLT2-Lc and MPC-NPLT3-Lc algorithms give quite good control

quality whereas the MPC-NPLPT-Lc scheme is slightly better, very close to the MPC-NO-Lc

scheme.

3. The use of the classical cost function in the MPC-NPLPT-L2 algorithm gives worse control

quality indicators.

4. The use of polynomial approximators, even in the MPC-NO-Lc algorithm, gives worse results

than utilization of the neural structure.

5. The calculation time of MPC algorithms is fairly similar to the results obtained when the model

error and additional disturbances are not considered, as shown in Table 1.

Table 4: Simulation results when model errors and disturbances are present: comparison of quality

indexes E2 and Ec and the calculation time for MPC algorithms using the custom cost function F1;

for the MPC-NPLPT-L2 algorithm the classical L2 norm is used

Algorithm Approximator E2 Ec Calculation time

MPC-NO-Lc Exact cost function 2.951× 102 1.121× 104 124.00%

MPC-NO-Lc Neural 2.957× 102 1.127× 104 100.00%

MPC-NO-Lc Polynomial, n = 2 3.382× 102 1.193× 104 84.00%

MPC-NO-Lc Polynomial, n = 3 3.406× 102 1.195× 104 85.60%

MPC-NO-Lc Polynomial, n = 4 3.227× 102 1.161× 104 86.40%

MPC-NO-Lc Polynomial, n = 5 3.169× 102 1.147× 104 93.60%

MPC-NO-Lc Polynomial, n = 6 3.110× 102 1.136× 104 90.40%

MPC-NO-Lc Polynomial, n = 7 3.076× 102 1.128× 104 92.00%

MPC-NPLT1-Lc Neural 2.986× 102 1.130× 104 40.80%

MPC-NPLT2-Lc Neural 2.967× 102 1.130× 104 40.80%

MPC-NPLT3-Lc Neural 2.602× 102 8.991× 103 40.00%

MPC-NPLPT-Lc Neural 2.827× 102 1.041× 104 67.51%

MPC-NPLPT-L2 Exact cost function 3.399× 102 1.246× 104 61.76%
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Figure 19: The process trajectories when when model errors and disturbances are present: the MPC-

NO-Lc, MPC-NPLT3-Lc and MPC-NPLPT-Lc algorithms using the neural approximation of the cus-

tom cost function F1

5 Concluding Remarks

A computationally efficient approach to constrained nonlinear MPC which uses a custom cost function

is discussed in this work. It makes it possible to consider a different control objective than the classical

case in which the quadratic norm is used, i.e., the summarized squared predicted control errors.

The custom cost function, which may be defined analytically or graphically, is represented by an

approximator. To obtain a computationally simple computational scheme, two predicted trajectories,

i.e., the approximator’s predicted output trajectory and the process output’s predicted trajectory, are

linearized at each algorithm’s execution. The first linearized trajectory is used in the minimized MPC

objective function; the second one is employed in the constraints. In consequence, a simple quadratic

programming task is derived. For a simulated pH reactor, the efficiency of the presented approach is

discussed. It is shown that when one trajectory linearization is performed at each algorithm’s execution,

the control quality is very good, provided that the trajectory used for linearization is determined using

an inverse static model for the current setpoint of the controlled variable. Furthermore, when multiple

linearizations are used when the sampling instant changes significantly, the resulting control quality

is excellent, practically the same as in the general MPC control method with nonlinear programming.

Validity of the described MPC algorithms is demonstrated for two custom cost functions when only

simple box constraints are assumed on the manipulated process input and in a more demanding case

when additional constraints are put on the predicted process output.

Of note, the results presented in this work indicate that the proposed MPC approach is very
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efficient, provided that the accuracy of the approximator is very good. That is why neural approxi-

mators are recommended in this work, as their accuracy is much better than that of the polynomial

approximators. It is necessary to emphasize that a precise approximator is necessary for good control

quality. Unfortunately, not precise polynomial approximators yield unacceptable control quality, which

is a limitation of the presented method. Conversely, precise neural approximators result in excellent

control quality. Furthermore, the differentiability of the approximator is required for trajectory lin-

earization. Neural networks, e.g., of MLP type, satisfy this requirement. It is important to note that

the presented method does not limit the dynamical model’s structure that is used for prediction. The

only condition is model differentiability.

The extension of the presented MPC method to deal with multivariable processes is straightfor-

ward. In such a case, different cost functions may be used to assess the influence of control errors of

the consecutive process outputs. Moreover, it is also possible to devise MPC algorithms with custom

cost functions for dynamical systems defined by state-space nonlinear models.
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