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Abstract This Chapter details MPC algorithms for processes described by state-
space Wiener models. At first, the simple MPC method based on the inverse static
model is recalled and the rudimentary MPC-NO algorithm is described. Next, the
computationally efficient MPCmethods with on-line model linearisation are charac-
terised: the MPC-SSL and the MPC-NPSL ones as well as two MPC schemes with
on-line trajectory linearisation: the MPC-NPLT and MPC-NPLPT schemes. All
MPC algorithms are presented without and with parameterisation using Laguerre
functions. The classical and an original, very efficient prediction method, which lead
to offset-free control, are presented. Finally, state estimation methods for MPC are
shortly mentioned.

7.1 MPC-inv Algorithm in State-Space

In the simplest approach, we may use the MPC algorithm in which the inverse model
of the static block is used. The general control system structure is presented in Fig.
3.1, the same as in the input-output process representation. In both input-output and
state-space formulations, limitations of that approach are the same, as discussed in
Chapter 3.1, i.e. the inverse model must exist and it is best when the process is
described by the SISO Wiener model or the MIMOWiener models I or III since, in
such cases, all inverse models are of SISO type. For more complex Wiener models,
the inverse models may be very complicated which makes implementation difficult
or even impossible. Example simulated processes for which the MPC-inv algorithm
based on the state-spaceWiener model is discussed in the literature are: a continuous
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stirred tank reactor [3], polymerisation reactors [3, 6, 17], a neutralisation reactor
[4].

7.2 MPC-NO Algorithm in State-Space

Prediction in State-Space for Offset-Free Control

A conventional method for providing offset-free MPC with state estimation is to
augment the state equations taking into account in the model additional states of
disturbances. For linear state-space systems, such a method was discussed in [5, 12,
13, 15, 16]. Next, this approach was extended in [14] to deal with nonlinear processes
of the following general form (the subscript “p” refers to the process)

x(k + 1) = fp(x(k), u(k), dp(k)) (7.1)
y(k) = gp(x(k), dp(k)) (7.2)

where dp(k) represents all and generally unknown true disturbances affecting the
controlled process. For prediction in MPC, the following augmented model is used

x(k + 1) = faug(x(k), u(k), d(k)) (7.3)
d(k + 1) = d(k) (7.4)

y(k) = gaug(x(k), d(k)) (7.5)

where d is the vector of disturbances used in the model, of length nd, i.e. d =[
d1 . . . dnd

]T. It is required that the number of disturbances located in the model
does not exceed the number of measured outputs, i.e. nd ≤ ny, which is an obvious
disadvantage of the augmented state method. For example, when ny = 1, as many
as nx + 1 possibilities exists: the disturbance d may be located in the consecutive nx
state equations or in the output equation. The actual location of the disturbance(s) is
an issue, usually many possibilities must be verified and the best one chosen.

In this work an original prediction calculation method is used to determine the
predicted values of state and output variables by means of the state-space Wiener
model of the process. The prediction method detailed below is next used in all
MPC algorithms. In place of the augmented model (7.3)-(7.5), basing on the state-
space Wiener model defined by Eqs. (2.84)-(2.85), the following model is used for
prediction

x(k + 1) = Ax(k) + Bu(k) + ν(k) (7.6)
y(k) = g(Cx(k)) + d(k) (7.7)

Unlike the augmented model, disturbances are taken into account in all state and
output equations. The state disturbance vector ν =

[
ν1 . . . νnx

]T is determined as the
difference between the estimated state, x̃(k), and the state calculated from the state
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equation (2.84)
ν(k) = x̃(k) − (Ax̃(k − 1) + Bu(k − 1)) (7.8)

where x̃ =
[
x̃1 . . . x̃nx

]T denotes the vector of estimated state variables. Of course,
if the state vector may be measured, measurements are used in place of estimations,
which gives

ν(k) = x(k) − (Ax(k − 1) + Bu(k − 1)) (7.9)

Unfortunately, it may be possible only in very few cases in practice. The output
disturbance vector d =

[
d1 . . . dny

]T is calculated as the difference between the
measured output vector, y(k), and the output calculated from the output equation
(2.85)

d(k) = y(k) − g(ṽ(k)) = y(k) − g(C(x̃(k))) (7.10)

When the state vector may be measured, we have

d(k) = y(k) − g(v(k)) = y(k) − g(C(x(k))) (7.11)

In the MPC-NO strategy, the state variables predicted for the sampling instant k + 1
at the current instant k are obtained from Eq. (7.6)

x̂(k + 1|k) = Ax̃(k) + Bu(k |k) + ν(k) (7.12)

When the state is measured, in place of Eq. (7.12), we have

x̂(k + 1|k) = Ax(k) + Bu(k |k) + ν(k) (7.13)

Similarly, using Eq. (7.6) recurrently, the predictions calculated at the sampling
instant k for the sampling instants k + p are

x̂(k + p|k) = Ax̂(k + p − 1|k) + Bu(k + p − 1|k) + ν(k) (7.14)

where p = 2, . . . , N . Using Eq. (7.7), the output predictions for the sampling instant
k + p calculated at the current sampling instant k, are

ŷ(k + p|k) = g(C x̂(k + p|k)) + d(k) (7.15)

for p = 1, . . . , N . In Eqs. (7.12), (7.13) and (7.14) the same state disturbance vector,
ν(k), is used over the whole prediction horizon. Similarly, in Eq. (7.15) the same
output disturbance vector, d(k), is used. Because, typically, variability of future
disturbances is not known, they are assumed to be constant over the whole prediction
horizon [19].

The presented disturbance modelling was introduced in [20] for linear state-space
systems and further extended for nonlinear ones in [21, 22]. A computationally
efficient MPC using the considered disturbance modelling was introduced in [8, 7].
The discussed approach to offset-free control has the following advantages:
a) simplicity of development, no need to check all possibilities of disturbance loca-

tion necessary in the augmented state approach,
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b) ability to compensate for the deterministic constant-type disturbances affecting
the process, which are crucial in process control because they include unavoidable
modelling errors or piecewise-constant disturbances,

c) only the process state must be estimated, not accompanied by the disturbance
vector as it is necessary in the case of the conventional augmented state method.

A unique feature of the proposed prediction method is that the resulting MPC con-
trollers assure offset-free control without the necessity to use an additional observer
of the deterministic disturbances. The key factor is the use of properly defined and
updated state and output disturbance predictions, ν(k) and d(k), used in state and
output prediction equations, respectively.

Let us derive scalar prediction equations which will be convenient for future
transformations. We assume that the estimated state vector, x̃, is used. When the
state is measured, it must be replaced by the measured vector, x.

Prediction Using State-Space SISO Wiener Model

At first, let us discuss the state-space SISO case in which the Wiener model depicted
in Fig. 2.1 is used. Model matrices A, B and C are given by Eq. (2.83). From Eqs.
(2.86) and (7.12), the state predictions for the sampling instant k + 1 are

x̂i(k + 1|k) =
nx∑
j=1

ai, j x̃j(k) + bi,1u(k |k) + νi(k) (7.16)

for i = 1, . . . , nx. From Eqs. (2.86) and (7.14), the state predictions for the sampling
instant k + p are

x̂i(k + p|k) =
nx∑
j=1

ai, j x̂j(k + p − 1|k) + bi,1u(k + p − 1|k) + νi(k) (7.17)

for i = 1, . . . , nx, p = 2, . . . , N . From Eqs. (2.87) and (7.15), the predictions of the
controlled variable are

ŷ(k + p|k) = g(v(k + p|k)) + d(k)

= g

(
nx∑
i=1

c1,i x̂i(k + p|k)
)
+ d(k) (7.18)

From Eqs. (2.86) and (7.8), the state disturbances are estimated from

νi(k) = x̃i(k) − ©«
nx∑
j=1

ai, j x̃j(k − 1) + bi,1u(k − 1)ª®¬ (7.19)
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for i = 1, . . . , nx. From Eqs. (2.87) and (7.10), the output disturbance is estimated
from

d(k) = y(k) − g
(
nx∑
i=1

c1,i x̃i(k)
)

(7.20)

Prediction Using State-Space MIMOWiener Model I

Next, we will discuss the case when the state-space MIMOWiener model I depicted
in Fig. 2.2 is used for prediction. Model matrices A, B and C are given by Eq. (2.89).
From Eqs. (2.91) and (7.12), the state predictions for the sampling instant k + 1 are

x̂i(k + 1|k) =
nx∑
j=1

ai, j x̃j(k) +
nu∑
j=1

bi, ju j(k |k) + νi(k) (7.21)

for i = 1, . . . , nx. From Eqs. (2.91) and (7.14), the state predictions for the sampling
instant k + p are

x̂i(k + p|k) =
nx∑
j=1

ai, j x̂j(k + p − 1|k) +
nu∑
j=1

bi, ju j(k + p − 1|k) + νi(k) (7.22)

for i = 1, . . . , nx, p = 2, . . . , N . From Eqs. (2.92) and (7.15), the predictions of the
controlled variables are

ŷm(k + p|k) = gm(vm(k + p|k)) + dm(k)

= gm

(
nx∑
i=1

cm,i x̂i(k + p|k)
)
+ dm(k) (7.23)

for m = 1, . . . , ny, p = 1, . . . , N . From Eqs. (2.91) and (7.8), the state disturbances
are estimated from

νi(k) = x̃i(k) − ©«
nx∑
j=1

ai, j x̃j(k − 1) +
nu∑
j=1

bi, ju j(k − 1)ª®¬ (7.24)

for i = 1, . . . , nx. From Eqs. (2.92) and (7.10), the output disturbances are estimated
from

dm(k) = ym(k) − gm
(
nx∑
i=1

cm,i x̃i(k)
)

(7.25)

for m = 1, . . . , ny.
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Prediction Using State-Space MIMOWiener Model II

Finally, we will discuss the case when the state-space MIMO Wiener model II
depicted in Fig. 2.3 is used for prediction. Model matrices A, B and C are given by
Eq. (2.94). Because the state equation is the same in both types of the state-space
MIMOWiener model, state predictions given by Eqs. (7.21) and (7.22) holds true in
the second model structure. Analogously, the state disturbances are estimated from
Eq. (7.24) in both cases. From Eqs. (2.97) and (7.15), the output predictions for the
sampling instant k + p are

ŷm(k + p|k) = gm(v1(k + p|k), . . . , vnv (k + p|k)) + dm(k)

= gm

(
nx∑
i=1

c1,i x̂i(k + p|k), . . . ,
nx∑
i=1

cnv,i x̂i(k + p|k)
)
+ dm(k) (7.26)

for m = 1, . . . , ny, p = 1, . . . , N . From Eqs. (2.97) and (7.10), the output disturbances
are estimated from

dm(k) = ym(k) − gm
(
nx∑
i=1

c1,i x̃i(k), . . . ,
nx∑
i=1

cnv,i x̃i(k)
)

(7.27)

for m = 1, . . . , ny.

Optimisation

Taking into account the obtained state and ouput prediction equations, i.e. Eqs.
(7.16), (7.17), (7.18) (the state-space SISOWiener model), (7.21), (7.22), (7.23) (the
state-space MIMO Wiener model I), (7.21), (7.22), (7.26) (the state-space MIMO
Wiener model II), it is clear that the predicted controlled variables are nonlinear
functions of the calculated future increments (1.3). It means that the resulting MPC-
NO optimisation problem is also nonlinear. The general formulations of these MPC-
NO optimisation problems are the same when input-output and state-space process
descriptions are used. If hard constraints are imposed on the controlled variables,
we obtain the nonlinear optimisation task (1.35). If soft constraints are used, the
nonlinear task is defined by Eq. (1.39). As far as MATLAB implementation is
considered, the general structures of the vectors and matrices which define the
constraints are the same in both input-output and state-space formulations. The
MPC optimisation task is solved in MATLAB by means of the fmincon function.
All details are given in Chapter 3.2. Of course, the main difference is the way the
predicted vector of the controlled variables, ŷ(k), is calculated. In the state-space
description the satate equations must be used. Of course, we have to use a state
estimator when the state cannot be measured.

Applications of the MPC-NO algorithm for Wiener systems are rather rare. An
example application of theMPC-NO algorithm based on a state-spaceWiener model
to a plug-flow tubular reactor is presented in [2]. The MPC-NO algorithm is rather
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treated as a reference to which alternative, more computationally efficient control
schemes are compared.

7.3 MPC-NO-P Algorithm in State-Space

In the state-space MPC-NO-P algorithm, all prediction equations derived in Chapter
7.2 for the MPC-NO algorithm can be used, it is only necessary to find from Eq.
(1.56) the control increments, 4u(k), for the actually calculated vector of decision
variables, c(k).

Although parameterisation using Laguerre functions makes it possible to reduce
the number of decision variables, we still have to solve a nonlinear optimisation task.
It is because the predicted vector of the controlled variables, ŷ(k), is a nonlinear
function of the calculated decision vector, c(k). The general formulations of these
MPC-NO optimisation problems are the same when input-output and state-space
process descriptions are used. If hard constraints are imposed on the controlled
variables, we obtain the nonlinear optimisation task (3.54). If soft constraints are
used, the nonlinear task is defined by Eq. (3.66). As far asMATLAB implementation
is considered, the general structures of the vectors and matrices which define the
constraints are the same in both input-output and state-space formulations. The
MPC optimisation task is solved in MATLAB by means of the fmincon function.
All details are given in Chapter 3.3.

7.4 MPC-NPSL and MPC-SSL Algorithms in State-Space

The MPC-SSL algorithm based on the state-space Wiener model with a neural
static block is described in [1] and [10]. Effectiveness of the algorithm is shown
for the following simulated processes: a gasifier in the first case and an intensified
continuous chemical reactor in the second case. The authors of these works show
that the classical LMPC algorithm based on a linear process description results in
unsatisfactory control quality and the MPC-SSL scheme gives much better results.
Unfortunately, the MPC-NPSL strategy is not discussed, yet it is likely to improve
the quality of control. Both MPC-SSL and MPC-NPSL schemes for the state-space
MIMOWiener model I are discussed and compared in [9]. The description presented
in this Chapter extends that publication.

Prediction Using State-Space SISO Wiener Model

At first, let us discuss the state-space SISO case in which the Wiener model depicted
in Fig. 2.1 is used. The time-varying gain of the nonlinear static part of the model
for the current operating point is defined by the general equations (3.69) and (3.70),
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i.e.
K(k) = dy(k)

dv(k) =
dg(v(k))

dv(k) (7.28)

where the model signal v(k) is calculated using Eq. (2.88) which gives

v(k) =
nx∑
i=1

c1,i x̃i(k) (7.29)

Prediction Using State-Space MIMOWiener Model I

If the state-space MIMO Wiener model I depicted in Fig. 2.2 is used, the time-
varying gains of the nonlinear static blocks of the model for the current operating
point are defined by the general equations (3.102)-(3.103) and (3.104)-(3.105), i.e.

Km(k) = dym(k)
dvm(k) =

dgm(vm(k))
dvm(k) (7.30)

for m = 1, . . . , ny, where the model signals vm(k) are calculated using Eq. (2.93)
which gives

vm(k) =
nx∑
i=1

cm,i x̃i(k) (7.31)

Prediction Using State-Space MIMOWiener Model II

If the state-space MIMO Wiener model II depicted in Fig. 2.2 is used, the time-
varying gains of the nonlinear static blocks of the model for the current operating
point are defined by the general equations (3.125)-(3.126) and (3.127)-(3.128), i.e.

Km,n(k) = dym(k)
dvn(k) =

dgm(v1(k), . . . , vnv (k))
dvn(k) (7.32)

for m = 1, . . . , ny, n = 1, . . . , nv. The model signals vn are calculated using Eq.
(2.98) which gives

vn(k) =
nx∑
i=1

cn,i x̃i(k) (7.33)

As a result of linearisation, taking into account the serial structure of the Wiener
model, we may easily conclude that in the SISO case, the model output may be
expressed as multiplication of the time-varying gain K(k) and the auxiliary signal
v(k), as defined by Eq. (3.71). In the case of the MIMO Wiener model I, we may
also notice that the signals y1(k), . . . , yny (k) may be easily found as multiplications
of the corresponding time-varying gains K1(k), . . . ,Kny (k) and the auxiliary signals
v1(k), . . . , vny (k), respectively, as defined by Eqs. (3.106)-(3.107). The diagonal gain
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matrix K (k), of dimensionality ny × ny, is defined by Eq. (3.108). Hence, the linear
approximation of the state-space Wiener model (2.84)-(2.85) is

x(k + 1) = Ax(k) + Bu(k) (7.34)
y(k) = K (k)v(k) = K (k)Cx(k) (7.35)

When theMIMOWiener model II is used, the signals y1(k), . . . , yny (k)may be easily
found asmultiplications of the corresponding time-varying gainsK1,1(k), . . . ,Kny,nv (k)
and the auxiliary signals v1(k), . . . , vnv (k). In contrast to the MIMO Wiener model
I, all input-output channels must be taken into consideration, as defined by Eqs.
(3.129)-(3.130). The resulting linear approximation of the MIMO Wiener model II
is also defined by Eqs. (7.34)-(7.35), but now v(k) is the vector of length nv and
the matrix K (k), of dimensionality ny × nv, is defined by Eq. (3.131). All things
considered, Eqs. (7.34)-(7.35) are used in all three cases of the state-space Wiener
models, i.e. for the SISO structure as well as MIMO representations I and II. One
may easy notice that the structure of the obtained linearised model (7.34)-(7.35) is
similar to that of the classical linear state-space models, but a time-varying matrix
K (k) is used in the output equation.

Using recurrently the general state prediction formula (7.6) and the state equation
(7.34), it is possible to calculate the predicted state vector for the whole prediction
horizon (p = 1, . . . , N)

x̂(k + 1|k) = Ax(k) + Bu(k |k) + ν(k) (7.36)
x̂(k + 2|k) = Ax̂(k + 1|k) + Bu(k + 1|k) + ν(k) (7.37)
x̂(k + 3|k) = Ax̂(k + 2|k) + Bu(k + 2|k) + ν(k) (7.38)

...

The state predictions can be expressed as functions of the increments of the future
control increments (similarly to Eqs.(3.89)-(3.91), the influence of the past is not
taken into account)

x̂(k + 1|k) = B4u(k |k) + . . . (7.39)
x̂(k + 2|k) = (A + I )B4u(k |k) + B4u(k + 1|k) + . . . (7.40)
x̂(k + 3|k) = (A2 + A + I )B4u(k |k)

+ (A + I )B4u(k + 1|k) + B4u(k + 2|k) + . . . (7.41)
...
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Let us define the predicted state trajectory over the whole prediction horizon, the
vector of length nxN

x̂(k) =


x̂(k + 1|k)
...

x̂(k + N |k)

 (7.42)

From Eqs. (7.39)-(7.41), the predicted state vector can be expressed in the following
way

x̂(k) = P4u(k) + x0(k) (7.43)

where the matrix

P =



B . . . 0nx×nu

(A + I ) B . . . 0nx×nu
...

. . .
...(∑Nu−1

i=1 Ai + I
)
B . . . B(∑Nu

i=1 A
i + I

)
B . . . (A + I ) B

...
. . .

...(∑N−1
i=1 Ai + I

)
B . . .

(∑N−Nu
i=1 Ai + I

)
B



(7.44)

is of dimensionality nxN × nuNu and the free state trajectory vector

x0(k) =


x0(k + 1|k)
...

x0(k + N |k)

 (7.45)

is of length nxN . Using the obtained linearised output equation (7.35) and the
state prediction equation (7.43), we derive the predicted trajectory of the controlled
variables, defined by Eq. (1.22), as

ŷ(k) = K̃ (k)P4u(k) + y0(k) (7.46)

where the matrix of dimensionality nyN × nxN is

K̃ (k) = diag(K (k)C, . . . , K (k)C) (7.47)

Let us remind that in the input-output process description we use the prediction
equation (3.93), i.e. ŷ(k) = G(k)4u(k) + y0(k). The relation obtained for the state-
space approach, i.e. Eq. (7.46), may be easily transformed to Eq. (3.93) equating
G(k) = K̃ (k)P. It means that in the state-space process description we may use the
same prediction equations derived for the input-output case. The output free trajec-
tory vector is defined by Eq. (3.88). In the MPC-NPSL algorithm, the consecutive


