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Abstract This Chapter discusses simulation results of MPC algorithms based on
Wiener models applied to the neutralisation reactor. At first, the process is shortly
described and identification of the Wiener model is discussed. Polynomials and
neural networks are used in the nonlinear static block of the model. Effectiveness of
bothmodel classes is compared. Implementation details of differentMPC algorithms
are given. Next, MPC algorithms are compared in terms of control quality and
computational time in the classical set-point following task and, additionally, some
constraints are imposed on the predicted value of the controlled variable.

5.1 Description of the Neutralisation Reactor

Lest us consider a neutralisation (pH) reactor [8]. The reactor is schematically shown
in Fig. 5.1. A base (NaOH) stream q1, a buffer (NaHCO3) stream q2 and an acid
(HNO3) stream q3 are mixed in a constant volume tank. The process has one input
variable which is the base flow rate q1 (ml/s) and one output variable which is the
value of pH. Changes of the buffer and acid streams may be treated as disturbances
of the process, but in this Chapter, they are assumed to be constant.
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Fig. 5.1 The neutralisation reactor control system structure

Table 5.1 The neutralisation reactor: the parameters of the first-principle model

K1 = 6.35 Wa1 = −3.05 × 10−3 mol Wb1 = 5 × 10−5 mol
K2 = 10.25 Wa2 = −3 × 10−2 mol Wb2 = 3 × 10−2 mol
V = 2900 ml Wa3 = 3 × 10−3 mol Wb3 = 0 mol

The continuous-time fundamental model of the process is comprised of two
ordinary differential equations

dWa(t)
dt

=
q1(t)(Wa1 −Wa(t))

V
+

q2(Wa2 −Wa(t))
V

+
q3(Wa3 −Wa(t))

V
(5.1)

dWb(t)
dt

=
q1(t)(Wb1 −Wb(t))

V
+

q2(Wb2 −Wb(t))
V

+
q3(Wb3 −Wb(t))

V
(5.2)

and one algebraic output equation

Wa(t) + 10pH(t)−14 − 10−pH(t) +Wb(t) 1 + 2 × 10pH(t)−K2

1 + 10K1−pH(t) + 10pH(t)−K2
= 0 (5.3)

State variables Wa and Wb are reaction invariants. The parameters of the above
first-principle model are given in Table 5.1. The values of process variables in the
nominal operating point are given in Table 5.2.

Fig. 5.2 depicts the structure of the continuous-time fundamental model of the
neutralisation reactor in Simulink. It may be used to act as the simulated process.
Of course, for this purpose the differential equations (5.1), (5.2) and the nonlinear
relation (5.3) may be also solved directly in MATLAB, without the necessity of
using Simulink.
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Fig. 5.2 The neutralisation reactor: the structure of the continuous-time fundamental model in
Simulink

Table 5.2 The neutralisation reactor: the nominal operating point

q1 = 15.55 ml/s pH = 7
q2 = 0.55 ml/s Wa = −4.32 × 10−4 mol
q3 = 16.60 ml/s Wb = 5.28 × 10−4 mol

Example step responses of the process are depicted in Fig. 5.3. The excitation
signal is

q1(t) =
{

q̄1 if t < 50 sec.
q̄1 + δq1 if t ≥ 50 sec.

(5.4)

where q̄1 denotes the value of the variable q1 in the nominal operating point. It is
clear that both steady-state and dynamic properties of the pH reactor are nonlinear.
Firstly, for the positive and negative steps, the process gains are different and the
gains depend on the amplitude of the input step. Secondly, time-constants of all



216 5 Modelling and MPC of the Neutralisation Reactor Using Wiener Models

0 100 200 300 400 500
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Fig. 5.3 The neutralisation reactor: example step responses
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Fig. 5.4 The neutralisation reactor: the steady-state characteristic

the steps are different. The steady-state characteristic of the neutralisation reactor is
depicted in Fig. 5.4.

In general, good control of the neutralisation process is necessary in chemical
engineering, biotechnology and waste-water treatment industries [11]. Since both
steady-state and dynamic properties of the neutralisation process are nonlinear, it is
difficult to control by the classical linear control methods (e.g. PID), in particular
when the set-point or other operating conditions change significantly and fast. In ad-
dition to its industrial importance, the neutralisation process is a classical benchmark
used to evaluate different nonlinear model structures and control methods. Due to
nonlinearity of the process, adaptive control techniques may be used, in particular, a
model reference adaptive neural network control strategy [20], an adaptive nonlinear
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output feedback control scheme containing an input-output linearising controller and
a nonlinear observer [10], an adaptive nonlinear Internal Model Controller (IMC)
[14] and an adaptive backstepping state feedback controller [25]. An alternative is
to use multi-model controllers, e.g. a multi-model PID controller based on a set
of simple linear dynamical models [2], a multi-model robust H∞ controller [7], or
fuzzy structures, e.g. a fuzzy PI controller [6], a fuzzy PID controller [12] and a fuzzy
IMC structure [13]. An adaptive fuzzy sliding mode controller is presented in [3], a
nonlinear IMC structure is discussed in [22]. Another options are: a neural network
linearising scheme cooperating with a PID controller [20], a model-free learning
controller using reinforcement learning [24] and an approximate multi-parametric
nonlinear MPC controller [9].

Of course, the neutralisation process may be controlled by MPC algorithms. A
multiple-model control strategy based on a set of classical linear MPC controllers
is described in [4, 7]. A neural network trained off-line to mimic the nonlinear
MPC algorithm may also be used [1]. A continuous-time MPC algorithm using a
piecewise-linear approximation, which simplifies implementation, is discussed in
[23]. When a nonlinear model is used directly in MPC for prediction, we obtain the
nonlinear MPC-NO optimisation problem solved at each sampling instant on-line.
Applications of the MPC-NO algorithm to the neutralisation process are reported
in [21, 19]. An application of the neural Wiener model (a network of the MLP
type is used as the static nonlinear part of the model) in the MPC-NPSL, MPC-
NPLT and MPC-NPLPT algorithms is described in [16]. An interesting alternative
to the neural network is the LS-SVM nonlinear approximator discussed in [17].
An excellent review of possible MPC approaches to the neutralisation process is
given in [11]. Although the neutralisation reactor is typically considered in the SISO
configurations, in some studies, the MIMO version of the process is used. A version
of the MPC-NPSL algorithm, in which the model is not linearised in the simplified
way, but the full linear approximation is calculated from the Taylor expansion, is
described in [18, 15]. Unlike numerous works, not the Wiener but Hammerstein
model structure is used. Although model accuracy is worse in comparison with that
of the Wiener one, the resulting MPC algorithm works very well; all inaccuracies
are compensated by the negative feedback mechanism present in MPC. Finally, a
multilayer control system structure may be used in which the optimal set-points for
the MPC algorithm are calculated on-line from an additional set-point optimisation
problem [15].

5.2 Modelling of the Neutralisation Reactor for MPC

In the case of the neutralisation reactor, we will use for prediction in MPC some
empirical input-output models, not the fundamental state-space model. If the funda-
mental model were used in MPC, it would be necessary to solve repeatedly on-line
the state differential equations (5.1)-(5.2) and the nonlinear algebraic output equation
(5.3). In order to find Wiener models, the fundamental state-space model is used
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Fig. 5.5 The neutralisation reactor: open-loop simulations (the training and validation data sets)

to generate 2000 samples of the process output variable when a series of steps of
random amplitude is applied as the input signal. The Runge-Kutta algorithm of the
order 45 is used to solve the differential equations. The sampling time is Ts = 10
seconds. Two sets of data are generated: the training data set and the validation one.
Fig. 5.5 depicts the manipulated and the controlled variables from the first and the
second sets, respectively. For model identification, the process variables are scaled
in the following way

u = (q1 − q̄1)/15, y = 0.2(pH − pH) (5.5)

where q̄1 and pH denote values of process variables at the nominal operating point
(Table 5.2).

We consider the following models of the pH reactor:

a) the linear model,
b) the Wiener model with a polynomial static nonlinear block,
c) the Wiener model with a neural static nonlinear block,

All dynamical models have the second order of dynamics [16]. It means that the
linear model is

y(k) = b1u(k − 1) + b2u(k − 2) − a1y(k − 1) − a2y(k − 2) (5.6)
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and the dynamic blocks of both types of the Wiener model are

v(k) = b1u(k − 1) + b2u(k − 2) − a1v(k − 1) − a2v(k − 2) (5.7)

In the first structure of the Wiener model, we use polynomials in the nonlinear
static part of the model. Such polynomial Wiener models may be determined in
MATLAB from input-output data shown in Fig. 5.5 by means of the function nlhw
which may be used to find general Hammerstein-Wiener models (a linear dynamic
part sandwiched by two nonlinear static blocks) the structure of which is shown in
Fig. 2.8. Syntax of the nlhw function is

sys = nlhw(Data,Orders,InputNL,OutputNL)

The estimated model is returned as the structure sys. Data is the data set used
for model identification, Orders specifies the delay and the order of dynamics of
the linear dynamic block, InputNL and OutputNL determine the types of static
nonlinear approximators used in the input and output nonlinear static blocks. A
few variants of nonlinear blocks are possible: piecewise linear functions, sigmoid
or custom networks defined by the user, wavelet networks, saturations, dead zones,
polynomials, constant unit gains. To obtain a Hammerstein model, a unit gain must
be chosen as OutputNL. Conversely, to obtain a Wiener model, a unit gain must be
chosen as InputNL. The nonlinear part of the polynomial Wiener model is

y(k) = g(v(k)) =
K∑
i=0

civi(k) (5.8)

where K denotes the degree of the polynomial and ci are coefficients.
In the second structure of the Wiener model, we use the sigmoid neural network

as the nonlinear static part of the model. Such neural Wiener models may also be
determined in MATLAB from input-output data by means of the function nlhw. The
nonlinear part of the neural Wiener model is

y(k) = g(v(k)) = d + PL(v(k) − r) +
K∑
i=1

aiϕ((v(k) − r)Qbi + ci) (5.9)

where the transfer function is the sigmoid one

ϕ(v(k)) = 1
1 + exp(−v(k)) (5.10)

For the SISO process, the scalar parameters are: a linear coefficient L, the linear
subspace P, the nonlinear subspace Q, the offset d and a mean value of the data r . K
is the number of nonlinear nodes. The parameters are: ai , bi and ci . We may simplify
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the notation by using the following representation of the nonlinear block

y(k) = g(v(k)) = dnn + lnn(v(k) − rnn) +
K∑
i=1

ann
i ϕ((v(k) − rnn)bnn

i + cnn
i ) (5.11)

where lnn = PL and bnn
i = Qbi for i = 1, . . . ,K are scalars, auxiliary superscripts

“nn” are added to all parameters of the nonlinear block.
Table 5.3 gives the values of model errors for different model configurations. All

errors are defined as the sum of squared differences between the data samples and
the output of the model for the whole data sets [5]. To select the model finally used
in MPC, we take into account the validation errors for dynamic data (Eval) and the
validation errors for steady-state data (Ess

val). The steady-state error is calculated for
200 equidistant points in the domain of q1. The linear model has large errors. As
far as the polynomial Wiener model is concerned, the structures of the degree K =
2, 3, . . . , 9, 10, 15, 20 are compared. The model with the polynomial degree K = 5
is chosen because it gives a good compromise between accuracy and complexity.
Moreover, increasing the degree of the polynomial does not give better results. As far
as the neural Wiener model is concerned, the structures with K = 1, 2, . . . , 10, 15, 20
hidden nodes are compared. In general, the neural Wiener models are more precise
than the polynomial ones. Furthermore, for the polynomials of high degree, in
particular for K = 10, 15, 20, large errors are obtained, whereas the neural Wiener
models are much more precise. It is important that in the case of the neural Wiener
model, the errors do not grow significantly when the number of hidden nodes is
increased. The neural Wiener model with five hidden units is chosen since it gives
very low values of errors and it has a moderate number of parameters (22).

Fig. 5.6 depicts the dynamic validation data set vs. the outputs of four models (the
linear model, the polynomial Wiener model of the degree K = 5, the polynomial
Wiener model of the degree K = 15 and the neural Wiener model containing K = 5
hidden nodes). Fig. 5.7 depicts the relation between the validation data vs. the
outputs of the compared models. As the numerical data indicate, the linear model
is very imprecise, the polynomial Wiener model of the degree K = 5 is good, the
polynomial Wiener model of the degree K = 15 is very bad and the neural Wiener
model containing K = 5 hidden nodes is excellent.

Finally, it is interesting to compare the real steady-state characteristic of the neu-
tralisation reactor vs. the characteristic of its empirical models. Such a comparison is
shown in Fig. 5.8 for the linear model, the polynomial Wiener model with different
degree of the polynomial and the neural Wiener model with a different number of
the hidden nodes. The obtained results correspond with the values of the steady-state
error Ess

v given in Table 5.3. We can see that the neural Wiener models make it
possible to achieve very good steady-state modelling. It is practically impossible for
the polynomial Wiener model, i.e. when the degree of the polynomial is low, the
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Fig. 5.6 The neutralisation reactor: the validation data set vs. the outputs of four models (the linear
model, the polynomial Wiener model of the degree K = 5, the polynomial Wiener model of the
degree K = 15 and the neural Wiener model containing K = 5 hidden nodes)
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Table 5.3 The neutralisation reactor: comparison of linear, polynomialWienermodels of the degree
K and neural Wiener models containing K hidden nodes in terms of the number of parameters
(npar), errors for dynamic data (Etrain and Eval denote the errors for the training and validation data
sets, respectively) and errors for the validation steady-state data (Ess

v ); for the Wiener models the
number of training epochs (ntrain) are given

Model K npar ntrain Etrain Eval Ess
val

Linear − 4 − 4.6849 × 101 5.5100 × 101 7.2282

Polynomial Wiener 2 7 100 3.5293 × 101 5.1654 × 101 1.2027 × 101

Polynomial Wiener 3 8 22 1.0896 × 101 1.0647 × 101 1.7528
Polynomial Wiener 4 9 15 9.6340 1.0468 × 101 3.2236
Polynomial Wiener 5 10 55 7.1403 6.4198 5.3075 × 10−1

Polynomial Wiener 6 11 100 7.1369 6.4166 5.4547 × 10−1

Polynomial Wiener 7 12 100 6.9839 6.2962 6.6179 × 10−1

Polynomial Wiener 8 13 63 6.4389 5.9981 2.8954
Polynomial Wiener 9 14 63 6.4388 6.0000 2.7576
Polynomial Wiener 10 15 81 5.3186 5.3038 3.5245 × 101

Polynomial Wiener 15 20 7 6.1889 × 101 5.2801 × 101 2.7649 × 104

Polynomial Wiener 20 25 7 1.5017 × 102 1.6791 × 102 8.6413 × 105

Neural Wiener 1 10 13 7.4231 6.6865 5.2167 × 10−1

Neural Wiener 2 13 20 6.9491 6.3098 4.9063 × 10−1

Neural Wiener 3 16 67 4.2745 4.7204 1.2290
Neural Wiener 4 19 100 1.6546 2.4682 4.2338 × 10−2

Neural Wiener 5 22 150 1.6495 2.4640 3.8260 × 10−2

Neural Wiener 6 25 200 1.6489 2.4657 4.9552 × 10−2

Neural Wiener 7 28 200 1.6482 2.4620 4.0388 × 10−2

Neural Wiener 8 31 250 1.6250 2.4933 3.8154 × 10−2

Neural Wiener 9 34 250 1.6568 2.4762 4.4784 × 10−2

Neural Wiener 10 37 250 1.6202 2.4675 4.0583 × 10−2

Neural Wiener 15 52 250 1.6187 2.4925 4.6630 × 10−2

Neural Wiener 20 67 250 1.6038 2.5171 3.9830 × 10−2

steady-state model characteristic does not have enough degrees of freedom; when
the degree of the polynomial is high, numerical problems occur (ill-conditioning).

5.3 Implementation of MPC Algorithms for the Neutralisation
Reactor

The following MPC algorithms are compared:

1. The classical LMPC algorithm based on a linear model (three example models,
obtained for different operating points, are considered).

2. The classical MPC-inv algorithm.
3. The MPC-SSL and MPC-NPSL algorithms.


