
Chapter 4
MPC of Input-Output Benchmark Wiener
Processes

Please cite the book:
Maciej Ławryńczuk: Nonlinear Predictive Control Using Wiener Models:
Computationally Efficient Approaches for Polynomial and Neural Structures.
Studies in Systems, Decision and Control, vol. 389, Springer, Cham, 2022.

Abstract This Chapter thoroughly discusses implementation details and simulation
results of various MPC algorithms introduced in the previous Chapter applied to
input-output benchmark processes. Two SISO processes are considered, the second
one has complex dynamics and Laguerre parameterisation turns out to be beneficial.
Next, three MIMO benchmarks are considered: two with two inputs and two outputs
(without and with cross-couplings) and one with as many as ten inputs and two
outputs. Implementation details of all algorithms are shortly given. All algorithms
are compared in terms of control quality and computational time.

4.1 Simulation Set-Up and Comparison Methodology

All simulations discussed in this book are carried out in MATLAB 2020a. The
function fmincon is used for nonlinear optimisation,whereas the function quadprog
is used for quadratic programming. In both cases, the default parameters are used,
including stopping criteria.

All MPC algorithms are compared using two performance indices. The first of
them

E2 =

ny∑
m=1

kmax∑
k=1

(
y

sp
m (k) − ym(k)

)2 (4.1)

measures the sum of squared differences between the required set-points, ysp
m (k), and

the actual process outputs, ym(k), for the whole simulation horizon (k = 1, . . . , kmax)

143

144 4 MPC of Input-Output Benchmark Wiener Processes

and for all outputs (m = 1, . . . , ny). The second one

EMPC-NO =

ny∑
m=1

kmax∑
k=1

(
yMPC-NO
m (k) − ym(k)

)2
(4.2)

measures the sum of squared differences between the process outputs controlled by
the “ideal” MPC-NO algorithm, yMPC-NO

n (k), and the process outputs controlled by
a compared MPC algorithm, ym(k). Additionally, the relative calculation time of all
MPC algorithms is given. Computation time is measured by means of the functions
tic and toc. As many as 5 repetitions of each simulation scenario are performed,
the specified time is calculated as an average of all experiments.

4.2 The SISO Process

4.2.1 Description of the SISO Process

The first considered process is a SISOWiener system. The linear part of the process
(Eqs. (2.1) is of the second order of dynamics (nA = nB = 2), the coefficients of the
model (2.2)-(2.3) are

a1 = −1.4138, a2 = 6.0650 × 10−1

b1 = 1.0440 × 10−1, b2 = 8.8300 × 10−2 (4.3)

The nonlinear static block (Eq. 2.5) is

y(k) = g(v(k)) = − exp(−v(k)) + 1 (4.4)

The steady-state characteristic y(u) of the whole Wiener system is depicted in Fig.
4.1.

4.2.2 Implementation of MPC Algorithms for the SISO Process

The following MPC algorithms are compared:

1. The classical LMPC algorithm in which a parameter-constant linear model is used
(three example models, obtained for different operating points are considered).
The classical Generalized Predictive Control (GPC) algorithm with the DMC
disturbance model is used as the LMPC algorithm [15].

4.2 The SISO Process 145

2. The classical MPC-inv algorithm (Chapter 3.1). In this approach, the inverse
model of the static nonlinear part of the model is used to cancel nonlinearity of
the process.

3. Two MPC algorithms with on-line simplified model linearisation and quadratic
optimisation: MPC-SSL and MPC-NPSL (Chapter 3.4). The first one uses for
free trajectory calculation a linear approximation of the model obtained on-line,
in the second one, the full nonlinear Wiener model is used for this purpose.

4. Two MPC algorithms with on-line trajectory linearisation performed once at
each sampling instant: MPC-NPLT1 and MPC-NPLT2 (Chapter 3.6). In the first
of them, linearisation is carried out along the trajectory of a future sequence of the
manipulated variable defined by the manipulated variable applied to the process
at the previous sampling instant (u(k−1)) as defined by Eq. (3.190). In the second
one, the trajectory used for linearisation is defined by the last (Nu−1) elements of
the optimal input trajectory calculated at the previous sampling instant as defined
by Eq. (3.191).

5. The MPC-NPLPT algorithm in which at each sampling instant a few repetitions
of trajectory linearisation and optimisation may be necessary, in particular when
the process is not close to the required set-point (Chapter 3.8).

6. The best possible MPC-NO algorithm in which the full Wiener model is used for
prediction without any simplifications (Chapter 3.2).

All LMPC, MPC-inv, MPC-SSL, MPC-NPSL, MPC-NPLT1, MPC-NPLT2 and
MPC-NPLPT algorithms use quadratic optimisation. TheMPC-NO algorithm needs
on-line nonlinear optimisation at each sampling instant. The LMPC algorithm uses
for prediction a linear model; all other MPC algorithms use the sameWiener model,
although in different ways.

-3 -2 -1 0 1 2 3
-12

-10

-8

-6

-4

-2

0

2

Fig. 4.1 The SISO process: the steady-state characteristic y(u)

146 4 MPC of Input-Output Benchmark Wiener Processes

Next, we shortly detail implementation details of all considered algorithms. In
general, all universal equations presented in Chapter 3 are used; here, we only
describe specific relations that depend on the static part of the model used.

The parameter-constant linear models used for prediction in the LMPC scheme
are obtained for three different operating points: the model 1 for y = −0.5, the model
2 for y = 0 and the model 3 for y = 1. It means that the model actually used in
LMPC is the linear dynamic part of the Wiener process multiplied by the gain of
the nonlinear static block for the considered operating points. In general, from Eqs.
(3.70) and (4.4), we have

K =
dg(v)

dv
= exp(−v) (4.5)

We obtain v = −4.0546×10−1, v = 0 and v = 6.9315×10−1 for the operating points
1, 2 and 3, respectively. Hence, the following gains of the nonlinear static blocks are
calculated off-line: K = 1.5, K = 1 and K = 0.5.

In a similar way the gain of the nonlinear static block is calculated in theMPC-SSL
and MPC-NPSL algorithms, but calculations are performed successively on-line, at
each sampling instant. The time-varying gain is

K(k) = dg(v(k))
dv(k) = exp(−v(k)) (4.6)

where v(k) is the model signal.
In the MPC-NPLT1 and MPC-NPLT2 algorithms, the entries of the derivative

matrix H(k) are computed from Eq. (3.211). For the nonlinear block (4.4), we have

dg(vtraj(k + p|k))
dvtraj(k + p|k) = exp(−vtraj(k + p|k)) (4.7)

Similarly, for calculation of the matrix H t (k) in the MPC-NPLPT scheme, we use
Eq. (3.283). We obtain

dg(vt−1(k + p|k))
dvt−1(k + p|k) = exp(−vt−1(k + p|k)) (4.8)

A neural network of the MLP type [3, 10, 11, 12, 14] with one hidden layer
containing five nonlinear units and a linear output layer is used as the inverse model
of the nonlinear static block in the MPC-inv algorithm. The nonlinear units use the
tanh activation function.MLP neural networks are used throughout this book because
they have the following essential advantages: excellent approximation ability [4], a
simple structure and in practice, a low number of parameters (weights) is sufficient
to obtain good models.

4.2 The SISO Process 147

4.2.3 MPC of the SISO Process

Parameters of all comparedMPC algorithms are the same: N = 10, Nu = 3, λ = 0.25,
the constraints imposed on the manipulated variable are: umin = −2.5, umax =
2.5. The horizons are long enough, the coefficient λ is sufficient for nonlinear
MPC algorithms. In this book, we do not consider tuning of MPC algorithms, i.e.
selection of appropriate horizons and tuning coefficients. These issues are thoroughly
discussed in classical textbooks [7, 15], a review of possible approaches is presented
in [2]. A practical example of finding the parameters of MPC for a solid oxide
fuel cell is described in [6], a similar study concerned with a boiler-turbine unit is
reported in [5]. A simple but efficient procedure how to select coefficients of the
MPC cost-function is described in [8, 9]. An optimisation-based approach to tuning
MPC is discussed in [13]; effectiveness of four global optimisation methods (the
Particle Swarm Optimisation (PSO) method, the firefly algorithm, the grey wolf
optimiser and the Jaya algorithm) is compared.

In the first part of simulations, the model is perfect (no modelling errors) and
the process is not affected by any disturbances. Let us verify performance of the
simplest approach to MPC, i.e. the LMPC algorithm in which a parameter-constant
linear model is used for prediction (three example models are used, obtained for
different operating points). Fig. 4.2 depicts simulation results for a few set-point
changes. Unfortunately, the process is nonlinear and the LMPC algorithm does not
lead to good control quality. In particular, some oscillations appear after the third
set-point change.

Fig. 4.3 compares performance of two simple MPC algorithms with on-line
model linearisation, i.e. the MPC-SSL and MPC-NPSL strategies, v.s. the best
possible MPC-NO scheme in which the nonlinear Wiener model is used without
any simplifications. Both algorithms with model linearisation work much better than
the LMPC scheme; there are no oscillations when the set-point changes in a broad
range. Application of the nonlinear model for calculation of the free trajectory in
the MPC-NPSL algorithm allows to reduce overshoot for negative set-point changes
and increase speed for positive ones comparing with the trajectories obtained in the
MPC-SSL scheme. Fig. 4.4 depicts changes of the time-varying gain of the nonlinear
static block calculated in the MPC-NPSL and MPC-SSL algorithms. Changes in the
MPC-NPSL scheme are slowerwhen comparedwith those observed in theMPC-SSL
one.

Fig. 4.5 compares performance of three MPC algorithms with on-line trajectory
linearisation, i.e. MPC-NPLT1, MPC-NPLT2 and MPC-NPLPT strategies, v.s. the
reference MPC-NO scheme. The algorithms with one linearisation at each sampling
instant, i.e. the MPC-NPLT1 and MPC-NPLT2 ones, are better than the MPC-
NPSL and MPC-SSL schemes with model linearisation, but still, they give slightly
different trajectories than those possible in the MPC-NO algorithm. The MPC-
NPLPT algorithm gives practically the same trajectory as the MPC-NO one. The

148 4 MPC of Input-Output Benchmark Wiener Processes

0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

0 10 20 30 40 50 60 70 80
-2

-1

0

1

Fig. 4.2 The SISO process: simulation results of the linear LMPC algorithm based on different
models, obtained for different operating points

0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

0 10 20 30 40 50 60 70 80
-2

-1

0

1

Fig. 4.3 The SISO process: simulation results of the MPC-NO, MPC-NPSL and MPC-SSL algo-
rithms

4.2 The SISO Process 149

0 10 20 30 40 50 60 70 80
0

1

2

3

Fig. 4.4 The SISO process: the time-varying gain of the nonlinear static block calculated in the
MPC-NPSL and MPC-SSL algorithms

additional parameters of theMPC-NPLPT algorithm are: δ = δu = δy = 0.1, N0 = 2,
the maximal number of internal iterations is 5. Fig. 4.6 shows simulation results of
the MPC-NPLPT algorithm for two different values of the parameter δ = δu = δy: 1
and 10. It is clear that the greater these parameters, the worse the resulting control
quality and the bigger the differences from the trajectories obtained in the best
possible MPC-NO strategy. Fig. 4.7 presents the number of internal iterations of the
MPC-NPLPT algorithm for different values of the parameter δ = δu = δy. When
the process output is close to the required set-point (i.e. the process is close to the
steady-state), one internal iteration is sufficient. When a step change of the set-point
occurs, the process is far from the steady-state and more than one internal iteration
is necessary. The actual number of internal iterations depends on the parameter
δ = δu = δy. Of course, the lower that parameter, the higher the number of internal
iterations are necessary and they last longer after each set-point step.

Finally, we consider the classicalMPC-inv approach to control dynamical systems
described by Wiener models based on the inverse model of the static nonlinear part
of the model. Simulation results are depicted in Fig. 4.8, the results obtained for
the MPC-NPLPT algorithm are given for comparison. For the perfect model and
no disturbances, the MPC-inv scheme gives very good results; for three set-points
changes, they are even slightly faster than in the case of the MPC-NPLPT algorithm.
In one case, the changes are slower. In two cases, overshoot is lower.

All considered MPC algorithms are compared in Table 4.1 in terms of the per-
formance criteria E2 (Eq. (4.1)) and EMPC-NO (Eq. (4.2)). The number of internal
iterations necessary in theMPC-NPLPT scheme is specified (they are summarised for
the whole simulation horizon). Additionally, the scaled calculation time is given, the
result for the most computationally demanding solution, i.e. the MPC-NO strategy,
corresponds to 100%. In general, the simple MPC-SSL and MPC-NPSL algorithms
with on-line model linearisation give quite good results, but much better accuracy
is possible when the algorithms with on-line trajectory linearisation are used. In
particular, the MPC-NPLPT algorithm is able to give practically the same control

150 4 MPC of Input-Output Benchmark Wiener Processes

0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

0 10 20 30 40 50 60 70 80
-2

-1

0

1

Fig. 4.5 The SISO process: simulation results of the MPC-NO, MPC-NPLPT, MPC-NPLT1 and
MPC-NPLT2 algorithms

0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

0 10 20 30 40 50 60 70 80
-2

-1

0

1

Fig. 4.6 The SISO process: simulation results of the MPC-NO and MPC-NPLPT algorithms for
different values of the parameter δ = δu = δy

4.2 The SISO Process 151

0 20 40 60 80

0

1

2

3

4

5

0 20 40 60 80

0

1

2

3

4

5

0 20 40 60 80

0

1

2

3

4

5

0 20 40 60 80

0

1

2

3

4

5

Fig. 4.7 The SISO process: the number of internal iterations (NII) of the MPC-NPLPT algorithm
for different values of the parameter δ = δu = δy

0 10 20 30 40 50 60 70 80

-2

-1

0

1

2

0 10 20 30 40 50 60 70 80
-2

-1

0

1

Fig. 4.8 The SISO process: simulation results of the MPC-NPLPT and MPC-inv algorithms

152 4 MPC of Input-Output Benchmark Wiener Processes

Table 4.1 The SISO process: comparison of all considered MPC algorithms in terms of the control
performance criteria (E2 and EMPC-NO), the sum of internal iterations (SII) and the calculation time

Algorithm E2 EMPC-NO SII Calculation time (%)

LMPC, model 1 1.7682 × 101 7.5352 × 10−1 – 36.7
LMPC, model 2 1.6884 × 101 8.5626 × 10−1 – 36.7
LMPC, model 3 1.6612 × 101 2.0040 – 36.8
MPC-inv 1.6272 × 101 2.3381 × 10−1 – 39.3
MPC-SSL 1.7964 × 101 1.4605 – 38.8
MPC-NPSL 1.8641 × 101 8.0533 × 10−1 – 38.7
MPC-NPLT1 1.6917 × 101 1.6185 × 10−1 – 42.7
MPC-NPLT2 1.7006 × 101 2.1282 × 10−1 – 40.9
MPC-NPLPT, δ = 10 1.6968 × 101 2.1156 × 10−1 79 42.1
MPC-NPLPT, δ = 1 1.6363 × 101 4.7067 × 10−3 96 46.1
MPC-NPLPT, δ = 10−1 1.6513 × 101 2.6108 × 10−5 109 48.7
MPC-NPLPT, δ = 10−2 1.6524 × 101 5.3482 × 10−7 123 51.6
MPC-NPLPT, δ = 10−3 1.6523 × 101 3.4081 × 10−7 132 54.4
MPC-NPLPT, δ = 10−4 1.6523 × 101 3.4171 × 10−7 149 57.8
MPC-NPLPT, δ = 10−5 1.6523 × 101 4.4881 × 10−7 151 58.8
MPC-NO 1.6524 × 101 – – 100.0

accuracy as the reference MPC-NO strategy because the obtained index EMPC-NO
is very close to 0. Of course, the lower the parameters δ = δu = δy, the higher the
number of the internal iterations and the better the control accuracy. It is interesting
to consider the computational time of the compared algorithms. The simple MPC-
SSL and MPC-NPSL algorithms with on-line model linearisation need practically
the same calculation time as the LMPC strategy (lower than 40% of that necessary
in the MPC-NO scheme), the MPC algorithms with trajectory linearisation are more
demanding. Of course, the lower the parameters δ = δu = δy, the longer the cal-
culation time. It is important to stress the fact that the MPC-NPLPT scheme for
δ = δu = δy = 0.1, which gives practically the same trajectories as the MPC-NO one
(Fig. 4.5), is characterised by the calculation time lower than 50% of that necessary
in the MPC-NO scheme.

It is interesting to study how the computational time is influenced by the length
of prediction and control horizons for all considered MPC algorithms. Table 4.2
presents the comparison in such a way that the calculation time for the horizons
N = 10, Nu = 3, corresponds to 100%. The first important observation is that the
control horizon has a major impact on the calculation time, the prediction one has
much a lower influence. It is natural since the control horizon defines the number
of decision variables in MPC optimisation. The second observation is that all MPC
algorithms with on-line linearisation are significantly less computationally demand-
ing for different combinations of horizons than the MPC-NO one. The best results
are obtained for long control horizons, e.g. Nu = 10. In such cases, the MPC-NO
scheme requires 2-3 longer calculation time.

