
Chapter 3
MPC Algorithms Using Input-Output Wiener
Models

Please cite the book:
Maciej Ławryńczuk: Nonlinear Predictive Control Using Wiener Models:
Computationally Efficient Approaches for Polynomial and Neural Structures.
Studies in Systems, Decision and Control, vol. 389, Springer, Cham, 2022.

Abstract This Chapter details MPC algorithms for processes described by input-
output Wiener models. At first, the simple MPC-inv method based on the inverse
static model is recalled. The rudimentary MPC algorithm with Nonlinear Optimisa-
tion (MPC-NO) repeated at each sampling instant is described. Next, two computa-
tionally efficient MPC methods with on-line model linearisation are characterised:
theMPC schemewith Simplified Successive Linearisation (MPC-SSL) and theMPC
approachwithNonlinear Prediction and Simplified Linearisation (MPC-NPSL). Two
MPC schemeswith on-line trajectory linearisation are also detailed: theMPCmethod
with Nonlinear Prediction and Linearisation along the Trajectory (MPC-NPLT) and
the MPC scheme with Nonlinear Prediction and Linearisation along the Predicted
Trajectory (MPC-NPLPT). All discussed MPC algorithms are first presented in their
rudimentary versions; the variants with parameterisation using Laguerre functions,
which reduces the number of decision variables, are described next.

3.1 MPC-inv Algorithm

The simplest and the most frequent approach to control dynamical processes de-
scribed by Wiener models is to use an inverse static model of the nonlinear part of
the Wiener model and a linear control algorithm [4]. The role of the inverse model is
to try to cancel the nonlinear static behaviour of the controlled process. The resulting
control system structure is depicted in Fig. 3.1. In the SISO case, the inverse model
is

v(k) = g̃(y(k)) (3.1)

71

72 3 MPC Algorithms Using Input-Output Wiener Models

Fig. 3.1 The control system structure for dynamical processes described by Wiener models using
the inverse static model; g̃ denotes the inverse static model

where the general function g̃ : R→ R. The inverse model is used twice for control.
Firstly, it is used to calculate the value of the auxiliary model signal basing on the
measured process output

vmod(k) = g̃(y(k)) (3.2)

Typically, the real signal v does not exist in the controlled process and its measure-
ment is impossible. Secondly, the inverse model is necessary to calculate the value
of the auxiliary variable corresponding to the current set-point of the controlled
variable

vsp(k) = g̃(ysp(k)) (3.3)

From the perspective of the control algorithm based on a linear model, the controlled
output variable is v, not y.

The described approach may be used with different kinds of linear controllers,
not only MPC ones [1, 2, 5, 16, 17, 18] but also with PID or Internal Model Control
(IMC) [3, 6] ones. An alternative is to use dynamic inversion [19]. Although the
whole idea seems to be simple and potentially efficient, it has important drawbacks:

1. The inversemodel must exist, whichmeans that the controller based on the inverse
model cannot be used when it is impossible to find the inverse representation of
the nonlinear part of the Wiener model. Of course, the problem occurs when the
static characteristic of the nonlinear block is non-invertible. Furthermore, as it is
discussed in Chapter 4.6, in some cases, the inverse models may be very complex.

2. As it will be shown in Chapter 4, the described structure may result in control ac-
curacy worse than in some other approaches especially developed for dynamical
processes described by the Wiener model. In particular, it may give unacceptable
control quality when the model used in MPC is not perfect and/or the process
is affected by unmeasured disturbances. Typically, both static and dynamic prop-
erties of processes are nonlinear. Hence, nonlinear process behaviour cannot be
entirely cancelled by a nonlinear static block.

3.2 MPC-NO Algorithm 73

Depending on the dimensionality of the process and model structure, we may dis-
tinguish the following cases:

1. In the simplest case, when the controlled process is described by the SISOWiener
model shown in Fig. 2.1, it is only necessary to find a SISO inverse model (3.1).

2. For MIMO Wiener models I and III, depicted in Figs. 2.2 and 2.4, respectively,
we have to use as many as ny inverse SISO models

v1(k) = g̃1(y1(k)) (3.4)
...

vny (k) = g̃ny (yny (k)) (3.5)

3. For MIMOWiener models II and IV, shown in Figs. 2.3 and 2.5, respectively, we
have to use nv inverse MISO models

v1(k) = g̃1(y1(k), . . . , yny (k)) (3.6)
...

vnv (k) = g̃nv (y1(k), . . . , yny (k)) (3.7)

In this case, the inverse models are likely to be complicated, in particular when
there are really many process outputs.

4. For the MIMOWiener model V shown in Fig. 2.6, it is necessary to use as many
as nuny inverse models

vm,n(k) = g̃m,n(ym(k)) (3.8)

for all m = 1, . . . , ny, n = 1, . . . , nu. In this case, we require that the inverse models
calculate all nuny auxiliary signals on the basis of only ny process output signals.
It may turn out to be very difficult or even impossible.

All things considered, provided that the inverse model exists, the MPC-inv algo-
rithm may be used in the SISO case or in the MIMO case when all nonlinear static
blocks are of SISO type, i.e. when the MIMOWiener models I or III are used. When
the MIMO Wiener models II, IV or V are used, the inverse models may be very
complicated, which makes implementation difficult or impossible.

3.2 MPC-NO Algorithm

In the MPC algorithm with Nonlinear Optimisation (MPC-NO), the decision vari-
ables, i.e. the future increments of the manipulated variable(s) (1.3) are calculated
at each sampling instant k from the optimisation problem. In the SISO case, the
formulation (1.12) is used, whereas in the general MIMO one, the optimisation
task is (1.20). In all cases, it may be transformed to a compact vector-matrix form
(1.35). When the soft constraints are imposed on the controlled variables, the opti-

74 3 MPC Algorithms Using Input-Output Wiener Models

misation problem is defined by Eq. (1.38), which may be transformed to a compact
vector-matrix form (1.39).

The model of the controlled process is used to calculate the predicted values
of the controlled variables for the consecutive sampling instants over the prediction
horizon, i.e. the quantities ŷ(k+1|k), . . . , ŷ(k+N |k). Provided that we have a perfect
model, in the SISO case, the prediction equation for the sampling instant k + p is

ŷ(k + p|k) = y(k + p|k) (3.9)

where the symbol y(k+ p|k) denotes the output of the model for the sampling instant
k + p used at the current instant k. Unfortunately, for prediction calculation we must
take into account that usually the model used in MPC is not perfect, i.e. there are
differences between properties of the process and its model and that themeasurement
of the process output is not ideal. In order to compensate for all these factors, the
following general prediction equation must be used [15, 20]

ŷ(k + p|k) = y(k + p|k) + d(k) (3.10)

where d(k) is the current estimation of the unmeasured disturbance which acts on the
process output. In the most typical approach (named “the DMC disturbance model”),
it is assumed that the disturbance is constant over the whole prediction horizon and
its value is determined as the difference between the real (measured) value of the
process output (y(k)) and the model output (ymod(k))

d(k) = y(k) − ymod(k) (3.11)

It may be easily proved that when the unmeasured disturbance estimation is used in
the prediction equation, the MPC algorithm has the integral action which leads to
no steady-state error [15, 20].

In the MIMO case, the predictions are

ŷm(k + p|k) = ym(k + p|k) + dm(k) (3.12)

for all process outputs, i.e. for m = 1, . . . , ny. Disturbance estimations are

dm(k) = ym(k) − ymod
m (k) (3.13)

Prediction Using SISO Wiener Model

At first, let us discuss the SISO case in which the Wiener model depicted in Fig. 2.1
is used. Using the general prediction equation (3.10) and from the description of the
nonlinear static block, i.e. Eq. (2.5), we have

ŷ(k + p|k) = g(v(k + p|k)) + d(k) (3.14)

3.2 MPC-NO Algorithm 75

where p = 1, . . . , N . From the description of the linear dynamic block, i.e. Eq. (2.4),
we have

v(k + 1|k) = b1u(k |k) + b2u(k − 1) + b3u(k − 2) + . . .
+ bnB u(k − nB + 1)
− a1v(k) − a2v(k − 1) − a3v(k − 2) − . . .
− anAv(k − nA + 1) (3.15)

v(k + 2|k) = b1u(k + 1|k) + b2u(k |k) + b3u(k − 1) + . . .
+ bnB u(k − nB + 2)
− a1v(k + 1|k) − a2v(k) − a3v(k − 1) − . . .
− anAv(k − nA + 2) (3.16)

v(k + 3|k) = b1u(k + 2|k) + b2u(k + 1|k) + b3u(k |k) + . . .
+ bnB u(k − nB + 3)
− a1v(k + 2|k) − a2v(k + 1|k) − a3v(k) − . . .
− anAv(k − nA + 3) (3.17)

...

In general, Eqs. (3.15)-(3.17) may be rewritten in the following compact form

v(k + p|k) =
Iuf (p)∑
i=1

biu(k − i + p|k) +
nB∑

i=Iuf (p)+1
biu(k − i + p)

−
Ivf (p)∑
i=1

aiv(k − i + p|k) −
nA∑

i=Ivf (p)+1
aiv(k − i + p) (3.18)

for p = 1, . . . , N . Taking into account the prediction of the auxiliary variable for
the future sampling instant k + p performed at the current instant k, the number of
future manipulated variables, from the sampling instant k, i.e. u(k |k), u(k +1|k), . . .,
is denoted by

Iuf(p) = max(min(p, nB), 0) (3.19)

The number of future values of the signal v, from the sampling instant k + 1, i.e.
v(k + 1|k), v(k + 2|k), . . ., is

Ivf(p) = min(p − 1, nA) (3.20)

The quantity v(k) does not depend on the future manipulated variables but only on
past ones, i.e. up to the sampling instant k − 1, it is clear from Eq. (2.4). From Eqs.
(2.6) and (3.11), the unmeasured disturbance is estimated from

d(k) = y(k) − g
(
nB∑
i=1

biu(k − i) −
nA∑
i=1

aiv(k − i)
)

(3.21)

76 3 MPC Algorithms Using Input-Output Wiener Models

Prediction Using MIMOWiener Model I

Next, we will discuss theMIMO case in which the first structure of theWiener model
depicted in Fig. 2.2 is used. Using the general prediction equation (3.12) and from
Eq. (2.14), we have

ŷm(k + p|k) = gm(vm(k + p|k)) + dm(k) (3.22)

where m = 1, . . . , ny, p = 1, . . . , N . Using the vector notation, Eq. (3.14) may be
obtained, the same that is used in the SISO case (in such a case, all three components
are vectors of length ny). Next, from Eq. (2.11), we have

vm(k + p|k) =
nu∑
n=1

(
Iuf (p)∑
i=1

bm,ni un(k − i + p|k) +
nB∑

i=Iuf (p)+1
bm,ni un(k − i + p)

)
−

Ivf (p)∑
i=1

am
i vm(k − i + p|k) −

nA∑
i=Ivf (p)+1

am
i vm(k − i + p) (3.23)

where m = 1, . . . , ny, p = 1, . . . , N . The quantities Iuf(p) and Ivf(p) (Eqs. (3.19) and
(3.20)) are independent of the model input and output because all model channels
have the same order of dynamics, defined by the same values of nA and nB. From
Eqs. (2.17) and (3.13), the unmeasured disturbances are estimated from

dm(k) = ym(k) − gm
(
nu∑
n=1

nB∑
i=1

bm,ni un(k − i) −
nA∑
i=1

am
i vm(k − i)

)
(3.24)

Prediction Using MIMOWiener Model II

Next, we will discuss the MIMO case in which the second structure of the Wiener
model depicted in Fig. 2.3 is used. Using the general prediction equation (3.12) and
from Eq. (2.25), we have

ŷm(k + p|k) = gm(v1(k + p|k), . . . , vnv (k + p|k)) + dm(k) (3.25)

where m = 1, . . . , ny, p = 1, . . . , N . The signals vm(k + p|k) are calculated from Eq.
(3.23), in a similar way it is done for the MIMO Wiener model I, for p = 1, . . . , N ,
but now m = 1, . . . , nv. From Eqs. (2.28) and (3.13), the unmeasured disturbances

3.2 MPC-NO Algorithm 77

are estimated from

dm(k) = ym(k) − gm
(

nu∑
n=1

nB∑
i=1

b1,n
i un(k − i) −

nA∑
i=1

a1
i v1(k − i), . . . ,

nu∑
n=1

nB∑
i=1

bnv,n
i un(k − i) −

nA∑
i=1

anv
i vnv (k − i)

)
(3.26)

Prediction Using MIMOWiener Model III

In the case of the third structure of the MIMO Wiener model depicted in Fig. 2.4,
using the general prediction equation (3.12) and from Eq. (2.53), we have

ŷm(k + p|k) = gm

(
nu∑
n=1

vm,n(k + p|k)
)
+ dm(k) (3.27)

for m = 1, . . . , ny, p = 1, . . . , N . From Eq. (2.47), we have

vm,n(k + p|k) =
Iuf (m,n,p)∑

i=1
bm,ni un(k − i + p|k) +

nm,n
B∑

i=Iuf (m,n,p)+1
bm,ni un(k − i + p)

−
Ivf (m,n,p)∑

i=1
am,n
i vm,n(k − i + p|k) −

nm,n
A∑

i=Ivf (m,n,p)+1
am,n
i vm,n(k − i + p)

(3.28)

for all m = 1, . . . , ny, n = 1, . . . , nu, p = 1, . . . , N . Because transfer functions of the
consecutive input-output channels may have different order of dynamics, in place of
Eqs. (3.19)-(3.20), we use

Iuf(m, n, p) = max(min(p, nm,nB), 0) (3.29)

and
Ivf(m, n, p) = min(p − 1, nm,nA) (3.30)

From Eqs. (2.56) and (3.13), the unmeasured disturbances are estimated from

dm(k) = ym(k) − gm ©«
nu∑
n=1

©«
nm,n

B∑
i=1

bm,ni un(k − i) −
nm,n

A∑
i=1

am,n
i vm,n(k − i)ª®¬ª®¬ (3.31)

78 3 MPC Algorithms Using Input-Output Wiener Models

Prediction Using MIMOWiener Model IV

In the case of the fourth structure of the MIMO Wiener model depicted in Fig. 2.5,
using the general prediction equation (3.12) and from Eq. (2.68), we have

ŷm(k + p|k) = gm

(
nu∑
n=1

v1,n(k + p|k), . . . ,
nu∑
n=1

vnv,n(k + p|k)
)
+ dm(k) (3.32)

for m = 1, . . . , ny, p = 1, . . . , N . The signals vm,n(k + p|k) are calculated from Eq.
(3.28), in a similar way it is done in the case of theMIMOmodel III, for n = 1, . . . , nu,
p = 1, . . . , N , but now m = 1, . . . , nv. From Eqs. (2.71) and (3.13), the unmeasured
disturbances are estimated from

dm(k) = ym(k) − gm
(

nu∑
n=1

(n1,n
B∑
i=1

b1,n
i un(k − i) −

n1,n
A∑
i=1

a1,n
i v1,n(k − i)

)
, . . . ,

nu∑
n=1

(nnv,n
B∑
i=1

bnv,n
i un(k − i) −

nnv,n
A∑
i=1

anv,n
i vnv,n(k − i)

))
(3.33)

Prediction Using MIMOWiener Model V

In the case of the fifth structure of the MIMO Wiener model depicted in Fig. 2.6,
using the general prediction equation (3.12) and from Eq. (2.77), we have

ŷm(k + p|k) =
nu∑
n=1

gm,n(vm,n(k + p|k)) + dm(k) (3.34)

for m = 1, . . . , ny, p = 1, . . . , N . The signals vm,n(k + p|k) are calculated from
Eq. (3.28), in the same way it is done in the case of the MIMO models III, for
all m = 1, . . . , ny, n = 1, . . . , nu, p = 1, . . . , N . From Eqs. (2.80) and (3.13), the
unmeasured disturbances are estimated from

dm(k) = ym(k) −
nu∑
n=1

gm,n
©«
nm,n

B∑
i=1

bm,ni un(k − i) −
nm,n

A∑
i=1

am,n
i vm,n(k − i)ª®¬ (3.35)

Optimisation

One may easily note from Eqs. (3.14), (3.22), (3.25), (3.27), (3.32) and (3.34) that
the predicted values of the controlled variables are nonlinear functions of the future
values of themanipulated variable(s), or in different words, nonlinear functions of the

3.2 MPC-NO Algorithm 79

calculated future increments (1.3). Hence, the optimisation problems (1.12), (1.20),
(1.35), (1.38) and (1.39) are in fact nonlinear ones. Hence, a nonlinear optimisation
method must be used on-line in the MPC-NO approach.

At first let us discuss how the MPC-NO optimisation problem with hard output
constraints defined by Eq. (1.35) should be reformulated in order to solve it in
MATLAB. We will use the fmincon function for optimisation. Its syntax is

X = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)

It solves the general nonlinear optimisation task

min
x(k)
{ f (x(k))}

subject to (3.36)
Ax(k) ≤ B(k)
Aeqx(k) = Beq

C(x(k)) ≤ 0
Ceq(x(k)) = 0
LB ≤ x(k) ≤ UB

The fmincon function makes it possible to take into account 5 types of constraints:
linear inequalities (Ax(k) ≤ B(k)), linear equalities (Aeqx(k) = Beq), nonlinear
inequalities (C(x(k)) ≤ 0), nonlinear equalities (Ceq(x(k)) = 0) and bounds (LB ≤
x(k) ≤ UB). When compared with the general nonlinear optimisation problem
(3.36) solved by the fmincon function, in our MPC-NO optimisation task (1.35),
the decision variable vector is x(k) = 4u(k) and there are only three types of
constraints: linear inequalities defined by

A =

[−J
J

]
, B(k) =

[−umin + u(k − 1)
umax − u(k − 1)

]
(3.37)

nonlinear inequalities defined by

C(x(k)) =
[− ŷ(k) + ymin

ŷ(k) − ymax

]
(3.38)

and bounds defined by
LB = 4umin, UB = 4umax (3.39)

Linear and nonlinear equality constraints are not present in our MPC-NO optimi-
sation problem (1.35). The vector of predicted values of the controlled variable(s),
ŷ(k), is calculated at each sampling instant for the given vector 4u(k) recurrently
from Eqs. (3.14) and (3.18) (the SISO Wiener model) or Eqs. (3.22) and (3.23) (the
MIMO Wiener model I) or Eqs. (3.23) and (3.25) (the MIMO Wiener model II) or
Eqs. (3.27) and (3.28) (the MIMO Wiener model III) or Eqs. (3.28) and (3.32) (the
MIMO Wiener model IV) or Eqs. (3.28) and (3.34) (the MIMO Wiener model V).

80 3 MPC Algorithms Using Input-Output Wiener Models

Let us note that the vector ŷ(k) is present in the minimised cost-function and in the
output constraints. It means that both of them are nonlinear.

Next, let us consider the MPC-NO optimisation problem with soft output con-
straints defined by Eq. (1.39). The algorithm calculates at each sampling instant not
only the future increments of the manipulated variable(s) but also optimal violations
of the original hard output constraints necessary to guarantee feasibility. Hence, the
vector of the decision variables

x(k) =

4u(k)
εmin(k)
εmax(k)

 (3.40)

is of length nuNu + 2ny. Let us also define auxiliary matrices

N1 =
[
InuNu×nuNu 0nuNu×2ny

]
(3.41)

N2 =
[
0ny×nuNu Iny×ny 0ny×ny

]
(3.42)

N3 =
[
0ny×(nuNu+ny) Iny×ny

]
(3.43)

which are of dimensionality nuNu×(nuNu+2ny), ny×(nuNu+2ny) and ny×(nuNu+
2ny), respectively. The following relations are true

4u(k) = N1x(k) (3.44)
εmin(k) = N2x(k) (3.45)
εmax(k) = N3x(k) (3.46)

We will also rewrite the vectors εmin(k) and εmax(k) defined by Eqs. (1.40). They
may be expressed in the following way

εmin(k) = IN×1 ⊗ εmin(k) (3.47)
εmax(k) = IN×1 ⊗ εmax(k) (3.48)

where the symbol ⊗ denotes the Kronecker product of two vectors. Using Eqs.
(3.45)-(3.46), the relations (3.47)-(3.48) may be expressed as

εmin(k) = IN×1 ⊗ N2x(k) (3.49)
εmax(k) = IN×1 ⊗ N3x(k) (3.50)

