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Abstract This Chapter is concerned withWiener models. At first, input-output struc-
tures are described: one SISO case and five MIMO ones. Next, state-space models
are detailed: one SISO case and two MIMO ones. A short review of identification
methods of Wiener models is given, possible internal structures of both model parts
are discussed and example applications ofWiener models are reported. Finally, other
structures of cascade models are shortly mentioned.

2.1 Structures of Input-Output Wiener Models

For prediction in MPC, i.e. to calculate the quantities ŷ(k + 1|k), . . . , ŷ(k + N |k)
used in the minimised MPC cost-function (1.7) or (1.13), a dynamical model of the
process is necessary. In this work, Wiener models are used for this purpose. As far as
input-output models are concerned, one SISO structure and as many as five MIMO
model configurations are described.

2.1.1 SISO Wiener Model

The structure of the SISO input-output Wiener model [57] is depicted in Fig. 2.1.
It consists of a linear dynamic block followed by a nonlinear static one. The linear
dynamic part of the model is described by the equation

A(q−1)v(k) = B(q−1)u(k) (2.1)
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Fig. 2.1 The structure of the SISO Wiener model

where the polynomials are

A(q−1) = 1 + a1q−1 + . . . + anA q−nA (2.2)
B(q−1) = b1 + . . . + bnB q−nB (2.3)

The auxiliary signal v is the output of the first block and the input of the second
block. All signals u, v and y are scalars. The backward shift operator (the unit time
delay) is denoted by q−1, the integers nA and nB define the order of dynamics, the
constant parameters of the linear dynamic part are denoted by the real numbers aj

( j = 1, . . . , nA) and bj ( j = 1, . . . , nB). From Eqs. (2.1), (2.2)-(2.3), the output of the
linear part of the model is

v(k) =
nB∑
i=1

biu(k − i) −
nA∑
i=1

aiv(k − i) (2.4)

The nonlinear static part of the model is described by the general equation

y(k) = g(v(k)) (2.5)

where the function g : R→ R is required to be differentiable (for implementation of
the computationally efficient nonlinear MPC algorithms described in Chapter 3). It
means that polynomials, neural networks, fuzzy systems (with differentiable mem-
bership functions) or Support Vector Machines (SVM) may be used in the second
model block. The output of the SISO Wiener model can be explicitly expressed as a
function of the input signal and the auxiliary signal of the model at some previous
sampling instants. Taking into account Eqs. (2.4) and (2.5), we obtain

y(k) = g

(
nB∑
i=1

biu(k − i) −
nA∑
i=1

aiv(k − i)
)

(2.6)

Let us stress that the signal v is used in the model, but in general, we assume that
it does not exist in the process. Hence, measurement of that signal is impossible,
but its value may be assessed from the model for the current operating point of the
process. Similarly, predictions of the signals v over the prediction horizon may also
be computed.
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Fig. 2.2 The structure of the MIMO Wiener model I

2.1.2 MIMOWiener Model I

The structure of the MIMO Wiener model I [57] is depicted in Fig. 2.2. It consists
of one linear dynamic MIMO block and ny SISO nonlinear static ones. The linear
dynamic part of the model is described by Eq. (2.1) but now u ∈ Rnu and v ∈ Rny .
Because SISO nonlinear static blocks are used, nv = ny. The polynomial model
matrices are

A(q−1) =


1 + a1
1q−1 + . . . + a1

nA q−nA . . . 0
...

. . .
...

0 . . . 1 + any
1 q−1 + . . . + any

nA q−nA

 (2.7)

B(q−1) =


b1,1
1 q−1 + . . . + b1,1

nB q−nB . . . b1,nu
1 q−1 + . . . + b1,nu

nB q−nB

...
. . .

...

bny,1
1 q−1 + . . . + bny,1

nB q−nB . . . bny,nu
1 q−1 + . . . + bny,nu

nB q−nB

 (2.8)

The constant parameters of the linear dynamic part are denoted by the real numbers
am
j ( j = 1, . . . , nA, m = 1, . . . , ny) and bm,nj ( j = 1, . . . , nB, m = 1, . . . , ny, n =

1, . . . , nu). From Eqs. (2.1) and (2.7)-(2.8), we can calculate the consecutive outputs
of the linear dynamic part of the model

v1(k) =
nu∑
n=1

nB∑
i=1

b1,n
i un(k − i) −

nA∑
i=1

a1
i v1(k − i) (2.9)

...

vny (k) =
nu∑
n=1

nB∑
i=1

bny,n

i un(k − i) −
nA∑
i=1

any
i vny (k − i) (2.10)
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which may be compactly expressed as

vm(k) =
nu∑
n=1

nB∑
i=1

bm,ni un(k − i) −
nA∑
i=1

am
i vm(k − i), m = 1, . . . , ny (2.11)

The nonlinear static parts of the model are described by the general equations

y1(k) = g1(v1(k)) (2.12)
...

yny (k) = gny (vny (k)) (2.13)

which may be compactly expressed as

ym(k) = gm(vm(k)), m = 1, . . . , ny (2.14)

where the functions gm : R → R are required to be differentiable. From Eqs. (2.9)-
(2.10) and (2.12)-(2.13), we obtain model outputs

y1(k) = g1

(
nu∑
n=1

nB∑
i=1

b1,n
i un(k − i) −

nA∑
i=1

a1
i v1(k − i)

)
(2.15)

...

yny (k) = gny

(
nu∑
n=1

nB∑
i=1

bny,n

i un(k − i) −
nA∑
i=1

any
i vny (k − i)

)
(2.16)

which may be compactly expressed as

ym(k) = gm

(
nu∑
n=1

nB∑
i=1

bm,ni un(k − i) −
nA∑
i=1

am
i vm(k − i)

)
, m = 1, . . . , ny (2.17)

2.1.3 MIMOWiener Model II

The structure of the MIMOWiener model II is depicted in Fig. 2.3. Similarly to the
MIMO Wiener model I shown in Fig. 2.2, it consists of one linear dynamic MIMO
block and ny static ones. On the other hand, there are two important differences.
Firstly, the number of auxiliary signals between two model parts (nv) may be, in
general, different from the number of outputs (ny). The number of auxiliary signals
may be treated as an additional model parameter, but it is straightforward to choose
nv = ny. Secondly, in the MIMO Wiener model II, the nonlinear static blocks are
of the Multiple-Input Single-Output (MISO) type, each of them has nv inputs and



2.1 Structures of Input-Output Wiener Models 45

Fig. 2.3 The structure of the MIMO Wiener model II

one output. The linear dynamic part of the model is described by Eq. (2.1) but now
u ∈ Rnu and v ∈ Rnv . The polynomial model matrices are

A(q−1) =


1 + a1
1q−1 + . . . + a1

nA q−nA . . . 0
...

. . .
...

0 . . . 1 + anv
1 q−1 + . . . + anv

nA q−nA

 (2.18)

B(q−1) =


b1,1
1 q−1 + . . . + b1,1

nB q−nB . . . b1,nu
1 q−1 + . . . + b1,nu

nB q−nB

...
. . .

...

bnv,1
1 q−1 + . . . + bnv,1

nB q−nB . . . bnv,nu
1 q−1 + . . . + bnv,nu

nB q−nB

 (2.19)

where the constant parameters of the linear dynamic part are denoted by the real
numbers am

j ( j = 1, . . . , nA, m = 1, . . . , nv) and bm,nj ( j = 1, . . . , nB, m = 1, . . . , nv,
n = 1, . . . , nu). Taking into account Eqs. (2.1), (2.18)-(2.19), the consecutive outputs
of the linear dynamic part of the model are calculated from

v1(k) =
nu∑
n=1

nB∑
i=1

b1,n
i un(k − i) −

nA∑
i=1

a1
i v1(k − i) (2.20)

...

vnv (k) =
nu∑
n=1

nB∑
i=1

bnv,n
i un(k − i) −

nA∑
i=1

anv
i vnv (k − i) (2.21)

which may be compactly expressed as

vm(k) =
nu∑
n=1

nB∑
i=1

bm,ni un(k − i) −
nA∑
i=1

am
i vm(k − i), m = 1, . . . , nv (2.22)

The nonlinear static parts of the model are described by the general equations
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y1(k) = g1(v1(k), . . . , vnv (k)) (2.23)
...

yny (k) = gny (v1(k), . . . , vnv (k)) (2.24)

which may be compactly expressed as

ym(k) = gm(v1(k), . . . , vnv (k)), m = 1, . . . , ny (2.25)

where the functions gm : Rnv → R are required to be differentiable. From Eqs.
(2.20)-(2.21), (2.23)-(2.24), we obtain model outputs

y1(k) = g1

(
nu∑
n=1

nB∑
i=1

b1,n
i un(k − i) −

nA∑
i=1

a1
i v1(k − i), . . . ,

nu∑
n=1

nB∑
i=1

bnv,n
i un(k − i) −

nA∑
i=1

anv
i vnv (k − i)

)
(2.26)

...

yny (k) = gny

(
nu∑
n=1

nB∑
i=1

b1,n
i un(k − i) −

nA∑
i=1

a1
i v1(k − i), . . . ,

nu∑
n=1

nB∑
i=1

bnv,n
i un(k − i) −

nA∑
i=1

anv
i vnv (k − i)

)
(2.27)

which may be compactly expressed as

ym(k) = gm

(
nu∑
n=1

nB∑
i=1

b1,n
i un(k − i) −

nA∑
i=1

a1
i v1(k − i), . . . ,

nu∑
n=1

nB∑
i=1

bnv,n
i un(k − i) −

nA∑
i=1

anv
i vnv (k − i)

)
, m = 1, . . . , ny (2.28)

2.1.4 MIMOWiener Model III

The structure of the MIMO Wiener model III is depicted in Fig. 2.4. In general,
similarly to the MIMO Wiener model I, it consists of ny SISO nonlinear static
blocks defined by Eq. (2.14), but the linear dynamic part of the model is different,
it is not represented by one MIMO block defined by Eq. (2.1). As a result of a
model identification procedure or from fundamental knowledge of the process, the
transfer functions of the consecutive input-output channels are typically found. They
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Fig. 2.4 The structure of the MIMO Wiener model III

comprise the linear dynamic part of the Wiener model. The first block of the model
is described by the array of transfer functions

v1(k)
...

vny (k)

 =


G1,1(q−1) . . . G1,nu (q−1)
...

. . .
...

Gny,1(q−1) . . . Gny,nu (q−1)




u1(k)
...

unu (k)

 (2.29)

The transfer functions have the general form

Gm,n(q−1) = Nm,n(q−1)
Dm,n(q−1) (2.30)

for all inputs and outputs of the linear dynamic block, i.e. for m = 1, . . . , ny, n =
1, . . . , nu. The numerators and the denominators of the transfer functions (2.30) are
polynomials

Nm,n(q−1) = bm,n1 q−1 + . . . + bm,n
nm,n

B
q−n

m,n
B (2.31)

Dm,n(q−1) = 1 + am,n
1 q−1 + . . . + am,n

nm,n
A

q−n
m,n
A (2.32)

The integer numbers nm,nA and nm,nB denote the order of dynamics of the consecutive
denominators and nominators, respectively. Let us stress the fact that order of dy-
namics of the consecutive transfer functions (2.30) may be different. In the MIMO
Wiener model I, all input-output channels have the same order of dynamics, defined
by nA and nB.
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The MIMO Wiener model I is usually considered in the literature [57, 74]. Even
though, initially, we may have the simple rudimentary model comprised of SISO
transfer functions as in Eq. (2.29), it is transformed to the MIMO Wiener model I.
More specifically, the linear dynamic block of the model III is transformed. From
Eq. (2.29) and Fig. 2.4, we have

v1(k) =
nu∑
i=1

G1,i(q−1)ui(k) (2.33)

...

vny (k) =
nu∑
i=1

Gny,i(q−1)ui(k) (2.34)

Taking into account Eq. (2.30), the linear part of the model (2.33)-(2.34) becomes

v1(k) =
nu∑
i=1

N1,i(q−1)
D1,i(q−1)ui(k) (2.35)

...

vny (k) =
nu∑
i=1

Nny,i(q−1)
Dny,i(q−1)ui(k) (2.36)

Multiplying the consecutive equations of the linear block (2.35)-(2.36) by the com-
mon denominators

∏nu
i=1 D1,i(q−1), . . . ,∏nu

i=1 Dny,i(q−1), respectively, we obtain
nu∏
i=1

D1,i(q−1)v1(k) =
nu∑
j=1

N1, j(q−1)
nu∏
i=1
i,j

D1,i(q−1)u j(k) (2.37)

...
nu∏
i=1

Dny,i(q−1)vny (k) =
nu∑
j=1

Nny, j(q−1)
nu∏
i=1
i,j

Dny,i(q−1)u j(k) (2.38)

Equations (2.37)-(2.38) may be rewritten in such a way that we obtain the linear
dynamic block used in the MIMO Wiener model I (Eq. (2.1)) where the entries of
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the matrices A(q−1) and B(q−1) (Eqs. (2.7)-(2.8)) are

A1,1(q−1) =
nu∏
i=1

D1,i(q−1) (2.39)

...

Any,ny (q−1) =
nu∏
i=1

Dny,i(q−1) (2.40)

and

B1,1(q−1) = N1,1(q−1)
nu∏
i=2

D1,i(q−1) (2.41)

...

Bny,nu (q−1) = Nny,nu (q−1)
nu−1∏
i=1

Dny,i(q−1) (2.42)

As a result of multiplication in Eqs. (2.39)-(2.40) and (2.41)-(2.42), the linear part of
the classical MIMO block (2.1) used in the MIMOWiener model I is likely to be of a
high-order, even though the transfer functions (2.30) used in the rudimentary MIMO
Wiener model III are of a low order. As it is demonstrated in Chapter 4.5, it may lead
to serious numerical problems and make predictive control difficult or completely
impossible. Hence, when the process has really multiple inputs and outputs, it is
strongly recommended to use the MIMO Wiener model III, not the classical model
I.

In the case of the MIMO Wiener model III, in order to explicitly express model
outputs as functions of the input signals of the process and the auxiliary signals of
the model at some previous sampling instants, we use Fig. 2.4, Eqs. (2.29) and (2.30)
which give

v1,1(k) = G1,1(q−1)u1(k) =
N1,1(q−1)
D1,1(q−1)u1(k) (2.43)

...

vny,nu (k) = Gny,nu (q−1)unu (k) =
Nny,nu (q−1)
Dny,nu (q−1)unu (k) (2.44)
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Taking into account Eqs. (2.31)-(2.32), we obtain

v1,1(k) =
n1,1

B∑
i=1

b1,1
i u1(k − i) −

n1,1
A∑
i=1

a1,1
i v1,1(k − i) (2.45)

...

vny,nu (k) =
n
ny,nu
B∑
i=1

bny,nu
i unu (k − i) −

n
ny,nu
A∑
i=1

any,nu
i vny,nu (k − i) (2.46)

Eqs. (2.45)-(2.46) may be rewritten in the compact form

vm,n(k) =
nm,n

B∑
i=1

bm,ni un(k − i) −
nm,n

A∑
i=1

am,n
i vm,n(k − i), m = 1, . . . , ny, n = 1, . . . , nu

(2.47)
From Fig. 2.4, we have

v1(k) =
nu∑
i=1

v1,n(k) (2.48)

...

vny (k) =
nu∑
i=1

vny,n(k) (2.49)

which may be rewritten compactly

vm(k) =
nu∑
i=1

vm,n(k), m = 1, . . . , ny (2.50)

Using Eqs. (2.14), (2.48)-(2.49), the consecutive model outputs are

y1(k) = g1

(
nu∑
n=1

v1,n(k)
)

(2.51)

...

yny (k) = gny

(
nu∑
n=1

vny,n(k)
)

(2.52)

which may be rewritten compactly

ym(k) = gm

(
nu∑
n=1

vm,n(k)
)
, m = 1, . . . , ny (2.53)


