
WINDOWS DISTRIBUTED MACHINE (WDM) SYSTEM
- THE FIRST STEP TO DISTRIBUTED SIMULATION WORLD

Robert ������ ���	and Andrzej Karbowski

Institute of Control and Computation Engineering
Warsaw University of Technology

ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: rkobylin@ia.pw.edu.pl, A.Karbowski@ia.pw.edu.pl

phone: (+48 22) 660 76 32 fax: (+48 22) 825 37 19

KEYWORDS

Computer software, network computing, multiprocessors,
distributed processors, combined simulation

ABSTRACT

In this paper1 we present a software environment for
performing distributed computations under the Microsoft
Windows family operating systems. It was designed mainly
for a parallel implementation of numerical algorithms – both in
synchronous and asynchronous version and for a distributed
event-driven simulation. The Windows Distributed Machine
(WDM) system consists of several components: a console
program, two types of demons, a library of functions, and a
kernel. They are thoroughly described. The advantages of
WDM are presented on the background of the most popular
distributed programming tools. Finally two typical applications
implemented under WDM – an asynchronous solution of the
system of linear equations and a discrete simulation of
wormhole routing algorithm on a multiprocessor machine are
presented.

INTRODUCTION

At present the computing power of clusters of
personal computers, working together in LAN or WAN, may
be compared with that of big supercomputers. Distributed
numerical calculations and simulation become an ordinary
thing. More and more products appear that offer
programmers tools, which make distributed programming
easier and faster. Current operating systems offer many
mechanisms that can be used for distributing of applications
over the network. Today the most popular are: Remote

1 The work reported herein was supported by KBN grant No 8 T11A
011 15, Microsoft sp. z o. o. and Compaq Computer sp. z o. o.

Procedure Call (RPC), sockets (Quinn and Shute 1996),
Distributed Component Object Model (DCOM) (Pattison
1998). There are also other software tools developed by
academia or industry consortia, such as: Parallel Virtual
Machine (PVM), Message Passing Interface (MPI), EJB
(Enterprise Java Beans) and CORBA (Common Object
Request Broker Architecture). While some of these tools
operate on too low level, for example they do not have the
important barrier synchronization mechanism, the other are
too general or too advanced. Most numerical applications
need only very small part of all procedures and the
calculations are performed in clusters of machines of the
same type. Now the most popular are 32-bit MS Windows
family operating systems. For beginners, like students writing
distributed applications running in Windows NT network in an
university laboratory it would be also difficult to start
appropriate services without Administrator rights.
Another drawback of the mentioned tools is that most of them
either do not have or have a very modest, being something
additional, graphical interface.

Hence, there is some sense in working out from the
very beginning a system, which provides a small, but
sufficient for writing most applications, subset of functions,
designed for Windows environment, with graphical interface.

WDM PROJECT ASSUMPTIONS

As it was mentioned, Windows Distributed Machine
system is dedicated for the Microsoft Windows platform. We
took the following project objectives:
• communication should be based on messages, sent

between components of the system
• Winsock 1.1 library should be used for the low-level

communication.
• programmers should not devote too much time to learn

how the system works to start programming

• the graphical user interface should be an inherent part of
the system;

• the basic aims of the graphical interface are as follows:
� it should help the user to define the computing

systems (machines, paths, programs, etc.) and to
start and to stop the application

� on the operator console some icons representing
state of each process during computation should
appear

• it should not be important how many computers take part
in computations; each component should have the
possibility to be run on any machine in the network

• after writing and compiling the program, the application
should be obtained by linking with the WDM library

• The WDM library should offer basic functions and
procedures for sending and receiving data between
processes, corresponding to the most important
functions from other well-known systems.

WDM COMPONENTS AND ARCHITECTURE

The WDM system architecture is presented in Fig. 1.

WDMQS

P1 P2 P3

WDM
Console

REXEC95
RexecSRV

REXEC95
RexecSRV

1

2

3

4

5

6

7

8

9

C1 C3C2

Fig. 1. WDM Components and communication between them

WDM Console, WDM Queue Server and Remote Execute
Service are the major components of WDM. They create an
“environment” for the distributed application. This application
uses WDM library functions for communication. Of course
each component can be run under Windows 95, Windows 98,
Windows NT 4.0 or Windows 2000.

WDM Console is used to create project (that is to
assign processes / programs to computers), remotely start
and stop the process, monitor its state, and send keyboard
input to a remote application or view the screen of a remote
application.

Fig. 2. Windows Distributed Machine Console

WDM Queue Server (WDMQS) is the heart of the system.
This component is responsible for queuing all messages sent
between units. It also sends the requests (like run, stop,
pause) from the console to the destination unit. Here the
buffers for all units are allocated as well as units screens
stored. In order to monitor applications during simulation or
computation, WDM Console must be connected to the
WDMQS. Thirteen icons in the Console window represent the
current state of the application (Fig. 3).

Icon Current state
- defining units; the project has not yet been

registered

- the project has been registered, but the unit
has not yet been started

- start pending, the command start has been
sent to the unit from console

- a failed attempt to start the unit, an error in
communication with the service Remote
Execute Service

- the unit has been started, but not registered
in WDMQS

- the active unit (wdm_UnitRegister was
called)

- pause pending, the command pause was
sent from the console to the unit

- the unit called wdm_barrier()

- the unit is suspended

- stop pending, the stop command was sent to
the unit from console

- the unit finished (wdm_UnitStop)

- the unit is waiting for keyboard input
(wdm_scanf)

- the unit is waiting for data from another unit
in a blocking mode (wdm_recv)

Fig. 3. Icons of the WDMConsole.

Windows NT does not offer a mechanism, which enables
running application on remote machines like rexec in UNIX.
WDM solves this issue using its own services - demons
(Miller 1998). Remote Execute Service is an NT service. It
must be installed and activated on any machine before
remote program execution is possible. Rexec95 is another
version of that demon, dedicated for Windows 95 and
Windows 98 (Petzold 1996).

WDM LIBRARY

Functions available in the WDM library can be
grouped in four categories.

registration:

WORD wdm_UnitRegister(int argc, char **argv);
void wdm_UnitUnregister();
void wdm_UnitStop();

Using wdm_UnitRegister is mandatory. This way our
application establishes connection with WDMQS and
receives UID. Information about project and location of
WDMQS is passed automatically to the program when
remote execution is used. Program can be run manually on
any machine but in this case this information must be passed
by the operator as command line parameters.

communication and synchronization:

int wdm_recv(int src , char *ptr);
int wdm_recv_any(WORD *rsrc, char *ptr);
int wdm_async_recv(int src , char *ptr);
int wdm_async_recv_any(WORD *rsrc, char *ptr);
int wdm_send(int dst , char *ptr, int len);
int wdm_send_over(int dst , char *ptr, int len);
int wdm_broadcast(char *ptr, int len);
int wdm_broadcast_over(char *ptr, int len);
void wdm_barrier(int nUID, char *name, ...);
void wdm_barrier_all(char *name);

Communication functions wdm_send(), wdm_recv(),
wdm_broadcast() are used to send and receive data from
particular unit. Function wdm_recv_any() takes the first
message from their queue. These functions work in blocking
mode. If we do not know whether the data is ready, we can
use nonblocking function wdm_async_recv(). Sometimes
data must be sent to all units at the same time. To do that
programmers can use wdm_broadcast().

input-output:

void wdm_printf(char *fmt, ...);
void wdm_scanf(char *s);

These functions communicate with the WDMQS. They are
very useful when we have no access to the remote computer.
From WDM Console we can view remote screen and send
keyboard inputs.

other functions:

int wdm_rexec(char *host, WORD port,
 char *cmdline, char *username, char *password);
int wdm_kill(char *host, WORD port,
 DWORD PID, char *username, char *password);
void wdm_ParseArgs(int argc, char **argv,
 char *ip, WORD *port, char *project,
 char *name);

The programmers could use these functions to communicate
with Remote Execute Services working on remote
computers. They make it possible to dynamically create or
destroy the processes and to deliver their parameters to the
program.

Below short sample explains process of creating
and running distributed program.

#include “ulib.h”
#define ALFA 101
#define BETA 102
#define GAMMA 103
void main(int argc, char **argv)
{
int UID;
int x,y,z;

 UID = wdm_UnitRegister(argc, argv);
 wdm_barrier(3, “DANE”, ALFA, BETA, GAMMA);

 switch (UID)
 {
 case ALFA: // unit ALFA code
 x = 10;
 wdm_send(GAMMA, &x, sizeof(x));
 break;
 case BETA: /* unit BETA code
 y = 100;
 wdm_send(GAMMA, &y, sizeof(y));
 break;
 case GAMMA: // unit GAMMA code
 wdm_recv(ALFA, &x);
 wdm_recv(BETA, &y);
 z = x + y;
 wdm_printf(“z = %d\n”,z);
 break;
 }
 wdm_UnitStop();
}

In this application we define 2 processes (ALFA, BETA)
responsible for calculating two values and sending them to
the master process GAMMA. This process collects
information form its neighbors and prints the result on the
virtual screen. As you can notice, there is only one program
for all units. During registration function wdm_UnitRegister()
communicates with WDM Queue Server and receives UIDs.
Since now each of them knows which part of the code to
execute. wdm_barrier() helps to synchronize computation.
None of the processes will go forward before each of them
reaches this place of the code. Using this function is not
actually necessary in this sample, because data sent to
GAMMA is buffered in WDMQS before delivery. Sequence of
running processes does not matter in this case, because
wdm_recv() is a blocking function. GAMMA process will wait
in this place for the requested data to be available in

WDMQS. Since we have our application ready, all we need is
to assign each process to the computer and start them using
WDM Console (Fig. 2).

CASE STUDY 1: SOLUTION THE OF SYSTEMS
OF LINEAR EQUATIONS

We want to solve the system of linear equations:

bAx =
for a given nonsingular matrix A of size nn× and a given

vector
nRb∈ , looking for a vector

nRx ∈ .

We assume, the matrix A is diagonally dominated (that is

i∀ ∑ ≠
>

ij ijii aa). In this case (Bertsekas and Tsitsiklis

1989) the solution may be obtained by an iterative method:

()bAxDxx −⋅−=:

where D is a diagonal matrix, such that
ii

ii a
d

1= .

The vector x may be partitioned and its parts allocated to
different units (processors / processes / computers) in an
arbitrary way.
Let us assume, that there are p units, that is

[]Tpxxxx ,...,, 21=

where ∑ =
=∈ p

i i
n

i nnRx i

1
, . Then, the i - th unit modifies

only subvector ix by the iteration:

()piiiii xxxxxxfx ,...,,,,...,,: 1121 +−=
obtaining subvectors ijx j ≠, from other units.

We used WDM to implement this algorithm and compute all
subvectors on different machines in MASTER-WORKER
model. In this model, the master program must decompose
matrix A and distribute it to the WORKERS. In asynchronous
version of this method, WORKERS do not depend on each
other and they can use maximum speed of their processors.
They perform as many iterations as needed to reach local
stop criteria. The results are sent to the MASTER and new
data is requested. MASTER collects results from all
WORKERS and checks the global stop criteria. When global
stop criteria is reached, MASTER stops all WORKERS.
Below we present the major procedures of both programs.

void worker()
{
 int msg, dif, i=0;
 do {
 printf(“.”);i++;
 wdm_recv(MASTER, (char *)&msg);
 if (msg==STOP_UNIT)
 break;
 wdm_recv(MASTER, (char *)&x);
 iteration();

 dif = xcompare(delta_x);
 msg = UPDATE;
 wdm_send(MASTER, (char *)&msg, sizeof(msg));
 wdm_send(MASTER, (char *)&beg, sizeof(beg));
 wdm_send(MASTER, (char *)&end, sizeof(end));
 wdm_send(MASTER, (char *)&dif, sizeof(dif));
 wdm_send(MASTER, (char *)&i, sizeof(i));
 wdm_send(MASTER, (char *)&xl[beg],
 (end-beg+1)*sizeof(double));
 } while (1);
 printf(“\n”);
 for (i=beg;i<=end;i++)
 wdm_printf(“%3d %+10.6f \n”,i,xl[i]);
}

void master()
{
 int active;
 int beg,end,dif,iter;
 WORD xuid;
 int msg;

 local_stop = (int *)malloc(p*sizeof(int));
 memset(local_stop,0,sizeof(int)*p);
 active = p;

 msg = NEW_X;
 wdm_broadcast((char *)&msg, sizeof(msg);
 wdm_broadcast((char *)&xo[0],
 size*sizeof(double));

 do {
 wdm_recv_any(&xuid, (char *) &msg);
 wdm_recv(xuid, (char *) &beg);
 wdm_recv(xuid, (char *) &end);
 wdm_recv(xuid, (char *) &dif);
 wdm_recv(xuid, (char *) &iter);
 wdm_recv(xuid, (char *) &xo[beg]);

 local_stop[xuid-UBASE]=dif;
 if (total_stop()==0) {
 msg = STOP_UNIT;
 wdm_send(xuid, (char *)&msg, sizeof(msg));
 active--;
 }
 else
 {
 msg = NEW_X;
 wdm_send(xuid, (char *)&msg, sizeof(msg));
 wdm_send(xuid, (char *)&xo[0],
 (size)*sizeof(double));
 }
 } while (active);
 free(local_stop);
}

CASE STUDY 2: WORMHOLE ROUTING
ALGORITHM

Multiprocessor machines with local memory have many
processors working independently. Each of them has its own
memory and can access data located only in this memory.
Information exchange between processors is based on
messages. The scalability of such machines is better than
machines with global memory, where access to this common
memory is a bottleneck. On the other hand, sending

messages between processors in machines with local
memory is not an easy thing and depends heavily on the
topology of the system. At present the most popular is mesh
topology - one of the simplest (Fig. 4).

Fig. 4. nm × processors mesh

In early machines packets were sent from node to node
(store and forward). Transmission delay of such model is:

D
B

L
t fs =∆ &

where L - packet length, B - channel bandwidth, D -
distance between two processors (that is the number of links
between processors). At the beginning of 90’s new technique
of reducing transmission time has been proposed. It is called
wormhole routing (Lionel et al.1993). In this method each
packet is split into a number of very small pieces - flits (Flow
Control Digit). The leading flit clears the way for the rest.
Other flits follow immediately the first one. They are being
sent from one processor to another according to a routing
algorithm. Flits are stored in small buffers in the mesh nodes.
If the required channel is being used by other packet, they
must wait till the channel is released.
Transmission delay of such model is:

()LDL
BB

L
D

B

L
t f

f
whr +=+=∆ 1

where fL flit length. Because LDL f << (flits are very

small) we can transform it to the following:

L
B

twhr

1=∆

As it is seen, the distance between end points has no impact
on the packet transmission time.
The problem is that wrong routing algorithm may cause
deadlock, which is shown in Fig. 5.

pkt. 1

packet 2

pkt. 3

packet 4

trasmitter

receiver

packet destination,
channel in use

flit is waiting for
channel release

Fig. 5. Deadlock in wormhole routing

WDM system has been used to simulate such model and
compare two routing algorithms.

Algorithm 1 – XY routing

We assign two numbers),(yx (position) to every node in nm ×
mesh. In XY routing algorithm flits go first in x direction (until they
reach the abscissa of the destination node) and then in y direction.

Denoting by),(yx current node position, by),(dd yx the

destination node position and by),(yx ′′ the next node position,

we can describe this algorithm by formula:

() ()
()

() ()
()




>+
<−

=′′





>+
<−

=′′

≠

yywhenyx

yywhenyx
yx

else

xxwhenyx

xxwhenyx
yx

thenxxif

d

d

d

d

d

1,

1,
,

,1

,1
,

Three packets transmitted due to XY routing algorithm are presented
in Fig. 6.

04 14 24 34 44

03 13 23 33 43

02 12 22 32 42

01 11 21 31 41

00 10 20 30 40

32 44

21 04

31 00

x

y

Fig. 6. XY routing algorithm

Algorithm 2

We enumerate nodes of nm × mesh according to the rule (Fleury
and Fraigniaud 1994)

() ()




−−+
+∗

==
oddisywhenxmmy

evenisywhenxmy
yxLthenyxuif

1*
,,

where yx, are node’s coordinates. Such mesh is shown in Fig. 7.

Now we can define the routing method: if u is our current node, and

v is the destination node, than routing function () wvuR =, is:

()
() () (){ } () ()
() () (){ } () ()





>≥

<≤
=

vLuLwhenunodeofneighbourzvLzLzL

vLuLwhenunodeofneighbourzvLzLzL
wL

z

z

min

max

20 21 22 23 24

19 18 17 16 15

10 11 12 13 14

09 08 07 06 05

00 01 02 03 04

13 24

07 20

06 00

x

y

Fig. 7. Wormhole routing algorithm No. 2

We have simulated 5x5 mesh (Fig. 8), using a event-driven
synchronous simulation. We decided to write two programs:
one for units and one (master) sending requests, collecting
data and synchronizing simulation. Master unit starts all 25
units on remote machines using wdm_rexec() function. Unit
obtains its UID using wdm_UnitRegister() and calculates the
node position. Having the position, it automatically knows its
neighbors and simulation can start. Master unit generates
traffic reading data from file. Each unit simulates routing
process and sends local time stamp to the neighbors and
master unit. Then the global simulation time T is calculated

using formula: ()ntttT ,...,,min 21= by the master unit.

The time stamp is sent to all units and they can simulate up
to time T . We used null messages to avoid situation when
the local time cannot be calculated because no event has
occurred on one of the links.
Below we present main function of unit program, just to show
WDM library usage.

int main(int argc, char **argv)
{
 BOOL STOP_NODE = FALSE;

 myUID = (WORD)wdm_UnitRegister(argc, argv);

 wdm_barrier_all("START"); // wait for the rest
 wdm_recv(MASTER, (char *)&M);
 wdm_recv(MASTER, (char *)&N);

 wdm_recv(MASTER, (char *)&ROUTE);
 InitLocalNodes(myUID); // define neighbors
 PrintLocalNodes();

 wdm_barrier_all("START2"); // all nodes ready

 do {
 T = NewT;
 printf("NewT = %d.\n",NewT);
 Check_Flit_Generator();
 Send_All_Flits();
 Recv_All_Flits();

 Send_Local_Time();
 wdm_recv(MASTER,(char*)tmp);//synchronization
 NewT = tmp->t;

 if (tmp->msg == COMPLETED) break; // Stop
 if (tmp->msg == GENERATE)
 InitGenerator(tmp);
 Send_All_ACK();
 Recv_All_ACK();
 } while (1);

 wdm_printf("*** COMPLETED ***\n");
 wdm_UnitStop();
 return 0;
}

Fig. 8. Wormhole routing simulation

CONCLUSIONS

In many cases, distributed simulation or
computations can be more effective and more natural than
sequential programming. Windows Distributed Machine can
be found as the very easy and useful tool for creating such
applications. Programmers do not need to care on the details
any more and can focus on computations of the simulated
process. However some futures offered by WDM can be
found in other well-known systems, there are several
completely new ones: remote screen preview and sending
keyboard inputs. The graphic user interface helps to monitor
application.

WDM was successfully tested on two problems of different
type: distributed solution of a set of linear equations and
distributed event-driven simulation.
WDM system has been also used as an auxiliary tool to the
class „Introduction to Parallel and Distributed Computations”
at our university. It turned out, that many students preferred it
than standard packages: PVM, MPI, Corba, etc., due to
simplicity of use in their standard Windows environment and
very small size. The binary files have only 1.2 MB. All
programs and wdm library were compiled using Microsoft
Visual Studio 6.0 Enterprise Edition.

WDM can be downloaded from:
http://www.ia.pw.edu.pl/~karbowsk/wdm
The distribution files with documentation in postscript after
compression has only 1.3M.

REFERENCES

Bertsekas, D.P. and J.N. Tsitsiklis. 1989. “Parallel and Distributed
Computation: Numerical Methods”, Prentice-Hall, Englewood
Cliffs, N.J..
Davis, R. 1994 “Windows NT Network Programming”, Addison-
Wesley, Reading, Massachusetts.
Fleury, E. and P. Fraigniaud. 1994. “Strategies for multicasting in
meshes”, Laboratoire de l’Informatique du Parallélisme, Ecole
Normale Supérieure de Lyon, Research Report No. 94-07
Lionel, M; D. Ni; and P. K. McKinley. 1993, “A Survey of
Wormhole Routing Techniques in Direct Networks”, IEEE
Computer, vol. 26. No. 2, pp. 62-76,
Miller, K. 1998. “Professional NT Services”, Wrox Press Ltd.,
Chicago, Illinois.
Pattison, T. 1998. “Programming Distributed Application with
COM and Microsoft Visual Basic 6.0”, Microsoft Press, Redmond,
Washington.
Petzold, C. 1996. “Programming Windows 95”, Microsoft Press,
Redmond, Washington.
Quinn, B. and D. Shute. 1996. “Windows Sockets Network
Programming”, Addison-Wesley, Reading, Massachusetts.

BIOGRAPHY

Robert ������ ��� was born in ���� �����	�
��

��
Poland, in 1970. He received the M.S. degree in computer
science from Warsaw University of Technology, Faculty of
Electronics and Information Technologies, in 1999. He is a
Microsoft Certified System Engineer and Microsoft Certified
Professional + Internet. In years 1994-1996 he was working
for Accord Development as Novell NetWare Network
Administrator, then in 1997-1998 he was working for XEROX
Poland as IT System Analyst and Network Administrator.
Currently he works as Microsoft Consultant for COMPAQ
(previously Digital Equipment), in Warsaw. He is
responsible for supporting and implementing Microsoft
Systems and environments for the biggest companies in
Poland.

Andrzej Karbowski was born in Augustów, Poland, in 1958.
He received M.S. degree in electronic engineering,

specialization automatic control from Warsaw University of
Technology, Faculty of Electronics, in 1983. He received
Ph.D. in 1990 in automatic control and robotics for thesis
“Structures and Mechanisms for Control of Multireservoir
Systems during Flood”. His scientific interests concentrate on
optimal control in risk conditions, decomposition and parallel
implementation of numerical algorithms, global optimization,
tools for complex systems management and control. His
results were described in about 10 articles published in
international journals and about 40 conference papers. He
works as assistant professor (adjunct) at Faculty of
Electronics and Information Technologies of Warsaw
University of Technology. For students of this faculty he gives
lecture “Introduction to Parallel and Distributed
Computations”. Other teaching activities concern theory and
implementation of control and decision support systems.

WINDOWS, WINDOWS NT, Visual Studio are trademarks of Microsoft
Corporation. UNIX is a trademark of The Open Group. All other product
names like, mentioned herein may be trademarks or registered
trademarks of their respective companies.

