
c©Ewa Szynkiewicz, 2007 1

Standard MPI - Message Passing Interface

The message-passing paradigm is one of the oldest and most widely used approaches for
programming parallel machines, especially those with distributed memory. There are two key
attributes characterizing the message-passing paradigm:

• it assumes a partitioned address space,

• it supports only explicit parallelization.

The logical view of a machine supporting the message-passing paradigm consists of P processes,
each with its own exclusive address space.

MPI was developed by the MPI working group. In 1993 the MPI Forum (http://www.mpi-forum.org/)
was constituted and MPI became a widely used standard for writing message-passing programs.

The interface is suitable for use by fully general MIMD programs, as well as those written in
style of SPMD.
MPI includes:

• communication contexts,

• process groups,

• point-to-pint communication,

• synchronization mechanisms,

• collective operations,

• process topologies.

From the user point of view MPI is a library of about 250 routines that can be used in programs
written in C, C++ and Fortran. All MPI routines, data types, constants are prefixed by ”MPI ”.
The return code for successful completion is MPI SUCCESS; otherwise an implementation-defined
error code is returned. All MPI constants and data structures are defined for C in the file ”mpi.h”.
This header file must be included in the MPI program.

The concepts that MPI provides, especially to support robust libraries, are as follows:

• Contexts of communication;

• Communicators;

• Groups of processes;

• Virtual topologies;

• Attribute caching.

COMMUNICATOR specifies the communication context for the communication operation.
Each communication context provides a separate communication universe. Messages are always
received within the context they were sent, and messages sent in differen contexts do not in-
terfere. The communicator also specifies the set of processes that share this communication
context. Every process that belongs to a communicator is uniquely identified by its rank. The

http://www.mpi-forum.org/

c©Ewa Szynkiewicz, 2007 2

rank of a process is an integer with values 0, 1, . . . , P−1, where P denotes the number of processes.

The communicators are identified by the handles with type MPI Comm. A predefined communicator
MPI COMM WORLD is provided by MPI. It allows communication with all processes that are
accessible after MPI initialization and all processes are identified by their rank in the group
of MPI COMM WORLD.

MPI routines

1. Starting MPI library

int MPI_Init (int *argc ,

** argv [])

The arguments of MPI Init are the command-line arguments of function main. MPI Init

can change these arguments.

2. Terminating MPI library

int MPI_Finalize (void)

3. Getting information (the number of processes determination)

int MPI_Comm_size(MPI_Comm comm ,

int *size)

This function indicates the number of processes involved in the communicator

4. Getting information (ranks determination)

int MPI_Comm_rank(MPI_Comm comm ,

int *rank)

This function gives the rank of the calling process in the group of comm.

5. Communicator destruction

int MPI_Comm_free(MPI_Comm *comm)

This collective operation marks the communication object for deallocation.

Group constructors

6. The handle to the group

int MPI_Comm_group(MPI_Comm comm ,

MPI_Group *group)

This function returns a handle to the group of the communicator comm

7. Selection to a new group

int MPI_Group_incl(MPI_Group group ,

int n,

int *ranks ,

MPI_Group * newgroup)

c©Ewa Szynkiewicz, 2007 3

This function creates a group newgroup that consists of the n proceses in group group with
ranks ranks[0],...,ranks[n-1]; the process with rank i in newgroup is the process with
rank ranks[i] in group. In the case of n=0 newgroup is MPI GROUP EMPTY.

8. Communicator construction to a new group

int MPI_Comm_create(MPI_Comm comm ,

MPI_Group newgroup ,

MPI_Comm * newcomm)

This function creates a new communicator newcom with communication group defined by
newgroup and a new context. The function returns MPI COMM NULL to processes that are not
in newgroup.

9. The group of processes partitioning

int MPI_Comm_split(MPI_Comm comm ,

int color ,

int key ,

MPI_Comm * newcomm)

This function partitions the group associated with the communicator comm into disjoint
subgroups, one for each value of color (color > 0). Each subgroup contains all processes of
the same color. Within each subgroup, the processes are ranked, in the order defined by the
value of key, with ties broken according to their rank in the old group. A new communicator
newcomm is created for each subgroup.

Processes synchronization

10. Synchronization (barrier)

int MPI_Barrier (MPI_Comm comm)

Sending and receiving messages (point-to-point communication)

Message passing programs may be written using asynchronous or synchronous paradigm. In
the asynchronous approach, all concurrent tasks execute asynchronously. Such programs
have non-deterministic behavior due to a race conditions. In the case of synchronous
implementation, tasks synchronize to perform interactions.

The basic operations in the message-passing programming paradigm are send and receive.
The message transfer consists of the following three phases:

• data is pulled out of the send buffer and a message is assembled,

• a message is transferred to receiver,

• data is pulled from the incoming message and disassembled into the receive buffer.

MPI library offers several types of send/receive operations. We can distinguish:

• synchronous and asynchronous

synchronous - send operation returns only after the receiver has received the data.

c©Ewa Szynkiewicz, 2007 4

asynchronous - send operation returns just after sending the message (the sender
doesn’t wait for the acknowledge receipt of data).

• blocking and non-blocking:

blocking - send/receive operation blocks until it can guarantee that the semantics
won’t be violated on return irrespective of what happens in the program. The
sending process sends a request to communicate to the receiver. When the receiver
encounters the target receive, it respons to the request. After receiving this
response, the sender initiates the transfer operation.

non-blocking - send/receive operation returns before it is semantically safe to do so.

Non-blocking send can be matched with blocking receive, and vice-versa.
In the message-passing paradigm the communication is initiated by the sender. The com-
munication will generally have lower overhead if a receive is already posted when the sender
initiates the communication.

Point-to-point communication arguments: tag message tag (the range of valid values
is 0, . . . , MPI TAG UB)).
datatype ∈ { MPI CHAR, MPI SHORT,MPI INT,MPI LONG,MPI UNSIGNED CHAR,

MPI UNSIGNED SHORT,MPI UNSIGNED,MPI UNSIGNED LONG,MPI FLOAT,MPI DOUBLE,

MPI LONG DOUBLE,MPI BYTE,MPI PACKED}

Blocking send and receive operations

MPI provides four modes for blocking communication – asynchronous (standard) and three
additional indicated by a one letter prefix: B for buffered, S for synchronous and R for ready.

11. Asynchronous send (standard)

int MPI_Send (void *sendbuf ,

int count ,

MPI_Datatype datatype ,

int dest ,

int tag ,

MPI_Comm comm)

The function sends count data of the type specified by the parameter datatype stored in the
send buffer, starting with the entry at address sendbuf. The destination of the message is
uniquely specified by the dest and comm arguments. The dest is the rank of the destination
process in the communicator domain specified by comm. The argument tag with values from
the range 0,. . .,MPI TAG UB is used to distinguish differen types of messages. MPI TAG UB is
defined MPI constant.

12. Buffered send

int MPI_Bsend (void *sendbuf ,

int count ,

MPI_Datatype datatype ,

int dest ,

c©Ewa Szynkiewicz, 2007 5

int tag ,

MPI_Comm comm)

The sender copies the data into the designed buffer and then sends it. Buffer allocation by
the user may be required for the buffered mode to be effective. Buffering is done by the
sender:

13. Send buffer allocation

int MPI_Buffer_attach (void *buffer , int size)

This function provides to MPI a buffer in the user’s memory to be used for buffering outgoing
messages. The buffer size is size. Only one buffer can be attached to a process at a time.

14. Synchronous send

int MPI_Ssend (void *sendbuf ,

int count ,

MPI_Datatype datatype ,

int dest ,

int tag ,

MPI_Comm comm)

The sender sends a request-to-send message. The receiver stores this request. When a
matching receive is posted, the receiver sends back a permission-to-send message, and the
sender now sends the message.

15. Ready send

int MPI_Rsend (void *sendbuf ,

int count ,

MPI_Datatype datatype ,

int dest ,

int tag ,

MPI_Comm comm)

A send can be started only if the matching receive is already posted (the message is sent as
soon as possible).

16. Blocking receive (standard)

int MPI_Recv (void *recvbuf ,

int count ,

MPI_Datatype datatype ,

int source ,

int tag ,

MPI_Comm comm ,

MPI_Status * status)

The function waits for the message with tag tag which should be sent by the process
with rank source in the communicator domain specified by comm. The receiver may specify
MPI ANY SOURCE value for source, and/or MPI ANY TAG value for tag, indicating that any
source and/or any tag are acceptable. Data is pulled from the incoming message and

c©Ewa Szynkiewicz, 2007 6

disassembled into the receive buffer with the initial address recvbuf. This buffer consists of
count entities of the type specified by the parameter datatype (the length of the received
message must be less than or equal to the length of the receive buffer). The source or
tag if wildcard values were used in the receive operation, and other additional information
concerned with the message may be returned by the status object. The type of status is
MPI-defined.

17. Non-blocking testing

int MPI_Iprobe (int source ,

int tag ,

MPI_Comm comm ,

int *flag ,

MPI_Status * status)

Returns flag=true if there is a message that can be received and that matches the arguments
source, comm and tag. It is not necessary to receive a message immediately after it has been
probed for (the same message may be probed for several times before it is received).

18. Blocking testing

int MPI_Probe (int source ,

int tag ,

MPI_Comm comm ,

MPI_Status * status)

Behaves like MPI Iprobe except that it is a blocking call that returns only after a matching
message has been found.

19. int MPI_Get_count(MPI_Status *status ,

MPI_Datatype datatype ,

int * count)

This function returns the number of entries received (count denotes number of received
entries).

Non-blocking send and receive operations

Upon return from the non-blocking send or receive operation, the process is free to perform
any computation that doesn’t depend on the completion of the operation. An alternative
mechanism that often leads to better performance is to use non-blocking communication. A
non-blocking send call will return before the message was copied out of the send buffer. A
non-blocking receive call will return before the message is stored into the receive buffer.
MPI provides the same four modes for non-blocking communication: standard, buffered,
synchronous and ready (the same naming conventions are used). The prefix of I (for Imme-
diate) indicates that the call is non-blocking. The additional argument request is used to
identify whether the operation is terminated.

20. Non-blocking send (standard)

int MPI_Isend (void *sendbuf ,

c©Ewa Szynkiewicz, 2007 7

int count ,

MPI_Datatype datatype ,

int dest ,

int tag ,

MPI_Comm comm ,

MPI_Request * request)

21. Non-blocking buffered send

int MPI_Ibsend (void *sendbuf ,

int count ,

MPI_Datatype datatype ,

int dest ,

int tag ,

MPI_Comm comm ,

MPI_Request * request)

22. Non-blocking synchronous send

int MPI_Issend (void *sendbuf ,

int count ,

MPI_Datatype datatype ,

int dest ,

int tag ,

MPI_Comm comm ,

MPI_Request * request)

23. Non-blocking receive

int MPI_Irecv (void *recvbuf ,

int count ,

MPI_Datatype datatype ,

int source ,

int tag ,

MPI_Comm comm ,

MPI_Request * request)

24. Waiting for operation completion

int MPI_Wait (MPI_Request *request ,

MPI_Status * status)

A call to MPI Wait returns when the operation identified by request is completed. It returns
information on the completed operation in status. The request is set to MPI REQUEST NULL.

25. Waiting for any operation completion

int MPI_Waitany (int count ,

MPI_Request * array_of_requests ,

int *index ,

MPI_Status * status)

c©Ewa Szynkiewicz, 2007 8

The function blocks until one of the operations associated with the active request in the
array array of requests has completed.

26. Testing

int MPI_Test (MPI_Request *request ,

int *flag ,

MPI_Status * status)

A call to MPI Test returns flag = true if the operation identified by request is completed.

Communication - recommendations

Blocking operations facilitate safe and easier programming. Non-blocking operations are
useful for speed up the computation by masking communication overhead. A non-blocking
send will return as soon as possible, whereas a blocking send will return after the data has
been copied out of the sender memory. The use of non-blocking sends is advantageous only
if data coping can be concurrent with computation. Additionally, one must be careful using
non-blocking operations since errors can result from unsafe access to data that is the process
of being communicated.

On the other hand the blocking synchronous protocol may lead to deadlock. Consider the
following example.
Example: The values x1 and x2 are calculated, and messages with the results of calculations
are exchanged using synchronous send protocol.

Process P1 Process P2

x1=f1(x) x2=f2(x)

MPI_Ssend x1 to Process P2 MPI_Ssend x2 to Process P1

MPI_Recv MPI_Recv

In this simple example processes P1 waits for the matching receive at P2, and vice-versa,
resulting in an infinite wait (deadlock situation).

Advice to users :

• Asynchronous blocking send (standard) MPI Send; blocking buffered send MPI Bsend

for large amount of transmitted data, or in situation where the programmer wants
more control.

• Asynchronous blocking receive MPI Recv, preceded by non-blocking testing MPI Iprobe.

• Synchronization - using barrier function MPI Barrier.

Alternative proposition:

27. Combined blocking send and receive

int MPI_Sendrecv (void *sendbuf , int sendcount ,

MPI_Datatype sendtype , int dest , int sendtag ,

void *recvbuf , int recvcount ,

MPI_Datatype recvtype , int source , int recvtag ,

MPI_Comm comm , MPI_Status * status)

c©Ewa Szynkiewicz, 2007 9

This function combines in one call the sending of a message to one destination and the
receiving of another message, from another process. Both source and destination are possibly
the same. The arguments are the same like in MPI Send and MPI Recv. Both send and receive
use the same communicator comm, but possibly different tags sendtag and recvtag. The
send and receive buffers must be disjoint, and may have different lengths and datatypes.

Collective communication

A collective operation is executed by having all processes in the group call the
communication routine, with matching arguments. The syntax and semantics are
consistent with the syntax and semantics of the point-to-point communication.

28. Broadcast from one member to all members of a group

int MPI_Bcast (void *buffer ,

int count ,

MPI_Datatype datatype ,

int root ,

MPI_Comm comm)

This function broadcasts a message from the process with rank root to all processes of the
group. It is called by all members of the group using the same comm and root, and the
contents of root’s buffer is copied to all processes. Arguments: count – number of entries
in buffer, datatype – data type of buffer, buffer starting address of buffer.

dane

p
ro

c
e
s
y

root A0

A0

A0

A0

A0

29. Scatter data from one member to all members of a group (the same amount of data)

int MPI_Scatter (void *sendbuf ,

int sendcount ,

MPI_Datatype sendtype ,

void *recvbuf ,

int recvcount ,

MPI_Datatype recvtype ,

int root ,

MPI_Comm comm)

The process root splits data buffered in sendbuf into equal segments of size sendcount

and sends the i-th segment to the i-th process in the group (root process included). Each

c©Ewa Szynkiewicz, 2007 10

process receives the message (recvcount – size, recvtype – data type) and copy it into the
buffer recvbuf. The arguments root and comm must have identical values on all processes.
The amount of data sent must be equal to the amount of data received, pairwise between
each process and the root.

dane

p
ro

c
e
s
y

root A0

A0

A1

A2

A3

A1 A2 A3

dane

p
ro

c
e
s
y

root A0

A0

A0

A0

A0

30. Scatter data from one member to all members of a group (different amounts of data)

int MPI_Scatterv (void *sendbuf ,

int * sendcounts ,

int * displs

MPI_Datatype sendtype ,

void *recvbuf ,

int recvcount ,

MPI_Datatype recvtype ,

int root ,

MPI_Comm comm)

A vector variant of the scatter operation that allows different amounts of data to be sent
to different processors. The parameter sendcount is replaced by the array sendcounts that
determines the number of elements to be sent to each process. In particular, the target
process sends sendcounts[i] elements to process i. Also, the array displays is used to
determine where in sendbuf these elements will be sent from. In particular if, sendbuf is
of the same type sendtype, the data sent to process i start at location displs[i] of array
sendbuf. Both the sendcounts and displays arrays are of size equal to the number of
processes.

c©Ewa Szynkiewicz, 2007 11

31. Gather data from all members of a group to one member (the same amount of data)

int MPI_Gather (void *sendbuf ,

int sendcount ,

MPI_Datatype sendtype ,

void *recvbuf ,

int recvcount ,

MPI_Datatype recvtype ,

int root ,

MPI_Comm comm)

The inverse operation to MPI Scatter. Each process (root process included) within the
domain of communicator comm sends the contents of its send buffer to the root process.
The type signature of sendcount and sendtype on all processes must be equal to the type
signature of recvcount and recvtype at the root process. So, the amount of data sent must
be equal to the amount of data received, pairwise between each process and the root.

dane

p
ro

c
e

s
y

root A0

A0

A1

A2

A3

A1 A2 A3

32. Gather data from all members of a group to one member (different amounts of data)

int MPI_Gatherv (void *sendbuf ,

int sendcount ,

MPI_Datatype sendtype ,

void *recvbuf ,

int recvcount ,

int *recvcounts ,

int * displs

MPI_Datatype recvtype ,

int root ,

MPI_Comm comm)

A vector variant of the gather operation that allows different amounts of data to be sent.
The parameter recvcount is replaced by the array recvcounts that determines the number
of elements to be sent to each process. The amount of data sent by processor i is equal to
recvcounts[i]. The array displays is used to determine where in recvbuf the data sent
by each process will be stored.

33. Scatter/Gather data from all members to all members of a group

c©Ewa Szynkiewicz, 2007 12

int MPI_Alltoall (void *sendbuf , int sendcount ,

MPI_Datatype sendtype ,

void *recvbuf , int recvcount ,

MPI_Datatype recvtype ,

MPI_Comm comm)

Each process sends distinct data sendbuf to all processes of a group (included itself). Each
process sends to the i-th process sendcount elements with data type sendtype, starting
from the element number i*sendcount of the table sendbuf. The received data are placed
in the table recvbuf. The block of data (recvcount – number of elements, recvtype – data
type) sent from process i-th is placed in the table recvbuf starting from the element number
i*recvcount. All processes in the domain within the communicator comm must be call with
the same values of arguments: sendcount, sendtype, recvcount, recvtype.

dane

p
ro

c
e
s
y

A10 A11 A12 A13

A00 A01 A02 A03

A20 A21 A22 A23

A30 A31 A32 A33

A10

A00

A20

A10A00 A20 A30A10A00 A20

A11A01
A21 A31

A12A02 A22 A32

A13 A23 A33A03

34. Global reduction operations

int MPI_Reduce (void *sendbuf ,

void *recvbuf ,

int count ,

MPI_Datatype datatype ,

MPI_Op op ,

int root ,

MPI_Comm comm)

This function combines the elements provided in the input buffer sendbuf (count – number
of elements, datatype – data type) of each process in the group, using the operation op:
op ∈ { MPI MAX, MPI MIN, MPI SUM, MPI PROD,MPI MAXLOC,MPI MINLOC,MPI LAND,MPI BAND,

MPI LOR,MPI BOR,MPI LXOR,MPI BXOR}.
The results are returned in the output buffer recvbuf (count – number of elements,
datatype – data type) of the process with rank root. Both, input and output buffers
have the same number of elements, with the same type. The routine is called by all group
members using the same arguments.

The operations are performed independently for each element from sendbuf. Each process
can provide one element, or a sequence of elements, in which case the combine operation
is executed element-wise on each entry of the sequence. For example, if the operation is
MPI MAX and the send buffer contains n elements, the i-th element of recvbuf will be the

c©Ewa Szynkiewicz, 2007 13

maximal value of i-th elements of all buffers sendbuf of all processes in the considered group.

MPI Allreduce(...) - variant of the reduce operation where the result is returned to all
processes in the group.

