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Objectives of the book:

The course is targeted at all computer science, electrical, electronics, telecommunications
and mechanical engineers who require the understanding of the functioning and the design
of logic circuits at different levels of their complexity. The motif for this lecture is to show
what are the major components and how to design digital logic for real time systems (e.g.
mechatronics, robotics, computer systems). The lecture starts with combinational logic and
ends with the design of large digital systems. The circuits integrated to a higher extent or
more complex systems are designed using the already introduced components. For instance,
a D-type flip-flop is designed using gates, then in turn functional blocks, such as counters
or registers, are designed using those flip-flops, and finally functional blocks are used to
construct data processing and control systems. In this way no phase of integration is left out
giving the reader a full understanding of the field. As a result the readers should be able to
design circuits and systems using elements of any scale of integration according to the needs
of a project. Moreover, different approaches to designing the same circuits or systems are
explained. All the concepts are explained explicitly showing the design process by simple yet
real engineering examples. The mathematical background is kept to the minimum necessary
level (rudimentary Boolean algebra is utilised). The examples are chosen in such a way that
the inner workings of computers are explained, starting at the gate level, traversing ever more
complex modules, and ending with microprogrammed machines.
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