Comput. & Graphics Yol. 11, No. 4, pp. 427543, 1987
Printed in Great Britain.

0097-8493/87 $3.00 + .00
@ 1987 Pergamon Journals Lid.

Technical Section

A LINGUISTIC APPROACH TO 3-D
"OBJECT RECOGNITION

WEYODZIMIERZ KASPRZAK
Institute of Computer Science, Polish Academy of Sciences, 00-901 Warsaw, P.O. Box 22, Poland

Abstract—The principles of a 3-D object recognition system for combined intensity-image and depth-map

understanding are discussed. The goal of such system

is to be an inversion of image synthesis performed by

1-D computer graphics. A linguistic model for two system elements, the knowledge base and recognition
strategy, being an extension of pattern recognition approaches, is outlined. It consists of a powerful object
specification language and a simuitaneous syntactic-semantic analysis in this language. The syntax is based
on a node-controlled parallel structure grammar. Particular attention is paid to elements shared in common

by several parts and to hidden line/surface problems.

Both are embedded into the grammars derivation.

The semantics is well-defined due to the attribution of the grammar.

INTRODUCTION
Three-dimensional object recognition is a fundamental
task performed by computer vision systems[1]. Many
researchers have not yet presented justification of their
methods in logical and/or mathematical terms. Such
a theory is known for two-dimensional pattern rec-
ognition. Two classes of pattern recognition methods
can be distinguished[2-3]): decision-theoretical and
structural. The former one arises from a few branches:

s Syntactic approach[4]
+ Linguistic approach(5]
e Logical approach[6]

Most image understanding research performed in
the past has concentrated on using digitized intensity
images as sensor data. Such object recognition is an
ill-posed problem because light-source parameters and
surface reflectance functions are not known. It is ex-
pensive or impossible to overcome the lack of infor-
mation arising from the 3-D scene to 2-D image pro-
jection. :

In recent years, though, digitized range data have
become available due to the following:

¢ Stereo vision[7-8]
« Range finders (especially laser devices)[9-10].

Range data are often produced in the form of an array
of numbers referred to as a range-image (or depth map),
where the numbers quantify the distance from the sen-
sor focal plane to object surfaces within the field of
view.

Object recognition using range image is still difficult,
but is a well-posed problem when observable object
shapes are known. Subsystems for this task can be dis-
tinguished, which can be independently modelled. A
close relation to computer graphics tasks, better than
before, can be established.

1. THE OBJECT-RECOGNITION PROBLEM
The rea! world that we see and touch is primarily
composed of solid materials. Those materials which
we handle on the high-level as primitives of knowledge
representation I define as OBJECTS. In general as OB-

JECTS, I consider assemblies of SOLIDS with defined
structure. '

For any given object we can define the origin of its
local coordinate system. Each object occupies space,
and at most one object can occupy any given point in
space. For reference purposes we assume the existence
of a world coordinate system related to the range finder
location, which can be placed at any convenient po-
sition. Objects are positioned in space relative to this
coordinate system by means of translation, rotation
and axis scaling. I denote the 9 transformation param-
eters as “*pos.”

Moreover, with each object we associate a vector of
qualitative features. They are of two sorts:

e Structure attributes (denoted “ats”)—describing the
objects composition from solids

e Feature attributes (denoted “atf™)—describing the
texture, colour or other surface characteristic

The triple (“pos,” “ats,” and “atf") can be called object
ATTRIBUTES.

Let “Ncl” be the number of objects distinguishable
by the system. We refer to the i-th object as “ob;.” The
number of instances of that object denote as “N.”
The OBJECT SPACE is the set of ordered pairs:

W= {(0b;,(pos, ats,atf);)}/
i=0,1,...,Ncl;j=1,...,N}

where (pos, ats, atf); is the vector of attribute values
for the j-th instance of object ob;. The additional object
“oby” is the sensor object with position “posy” and
feature-vector “atfp.”

The set of all positions is contained in the set Real®
% Real® X Real®, since the domains of translation, ro-
tation and scaling belong to Real’. The domains for
all structure and feature attributes are finite or at most
enumerated.

A depth sensor obtains a depth-map projection of
a scene. We model this projection as a mathemati-
cal operator, D, which maps clements in the
set W_Domain = Objects X Positions X Struc-
ture_Domains X Feature_Domains into elements in

427

428

the set of all scalar functions of 2 variables, which we
denote as Depth_f:

D:W_Domain — Depth_ f
Depth_. f{x) = g/ob, pos, ats/(x) = D{ob, pos, ats),

where x is the vector of 2 variables of the focal plane
of the sensor. This notation demonstrates that the set
of depth-map functions associated with a single object
is an infinite family of functions, when the set of po-
sitions is not enumerated, and an enumerated family
of functions, if opposite.

Since objects do not occupy all input elements, we
need a convention for depth-map function values for
this spatial vector x values, which do not correspond
to object surface points. If the point (x, Depth_ f(a))
can not lie on an object surface, we assign the value
of —co to Depth_ f(x). Hence we write the projection
of a set of m objects as follows:

Depth._ f{x) = max g/(ob, pos, ats),/(x)
1=sism

= max D((ob, pos, ats),).
l<i=m

Note that the single-object occlusion operator is in-
cluded in the depth operator, D, and that the multiple-
object occlusion is performed by the max computation.

For understanding intensity images additional object
space elements are needed. Besides the sensor object
that receives light, I introduce an object that generates
light—"0{,” with position—*pol” and feature attri-
butes—*“atl.” A surface reflectance characteristic—
“ref”—must be further appreciated for each pair “‘ob-
ject, feature attribute values.” The intensity image
. is given by applying an illumination-reflectance op-
erator “INT":

Int_f(x)
=INT {[max D((ob, pos, ats),), atf;, ref}], of, pol, atl}
l<ism -

to the depth-map function, by given light source and
feature attributes and reflectance characteristics of ob-
jects.

The intensity-image object recognition problem is
generally much more difficult than depth-map recog-
nition, owing to the additional inversion of the INT
operator. But when solved, it gives also the feature at-
tributes of the recognized object instance. This is a
helpful information for high-level processing.

Hence the combined depth-map and intensity-image
object recognition problem can be formulated as:

“Given an intensity image, Int..f(x), associated with the
depth-map function, Depth__ f(x), by operator INT, determine
the sets of possible objects with corresponding positions,
structure and feature attributes, that could be projected under
given intensity-reflectance of objects and light source char-
acteristics to obtain Int_ f{x) and Depth_ f{x).”

2. OBREC SYSTEM
2.1 Principles
A proposal to handle data of three abstraction levels
in a computer vision system was recently offered in
{11-12]—LOW-level, OBJECT-level and HIGH-level.

W. KASPRZAK

Low-level processing includes image formation,
processing and segmentation. It fulfills a transformation
from real scene into a symbolic description that uses
only local-surface primitives, '

Object-level processing uses symbolic description
coming from the low-level as input data. It performs
surface reconstruction, volume localization and object
description.

High-level processing gives interpretations in terms
of natural language or the same level of abstraction.

But until now most researchers mean that high-level
knowledge is needed to build interpretations on lower
levels. In fact, in traditional intensity-image under-
standing one can hardly speak about a homogeneous
object-level. The knowledge about light and physics
allows us only to hypothesize 3-D cues from the image.
But interpretation is achieved due to the high-level
world model.

The 2-D and 3-D descriptions can not be obtained
from- the image data unambiguously by bottom-up
processing without the help of the high-level. I claim
that range data allows to overcome this problem and
to split the world-model into one for the object-level
and the other for high-level. On both levels image in-
terpretation can be performed, although on object-level
it is a single-image interpretation and on high-level a
dynamic interpretation.

Now the high-level expectations about what is seen
control the effectiveness of lower processes, but do not
decide in primitive extraction and interpretation prob-
lems. This control permits the following examples:

¢ More than one object-level interpretation can exist;
the high-level chooses among them.

¢ Refinement of object-interpretation—more details
in image can be analyzed.

+ Extension of object-interpretation—other. image
places, not only those centrally located, will be in-
terpreted.

To eliminate possible problem ambiguities, I define
precisely the OBJECT RECOGNITION SYSTEM
{OBREC system) as an object processing level of a
computer vision system with at least intensity-image
and depth-map as input data. It means that the signal
input consists at least of an array of pixel intensities
and a corresponding array of pixel depths. Any other
corresponding array of numerical values can be avail-
able.

2.2 Input data

The input data to the OBREC system is ¢reated by
Iow-level segmentation processes and consists of local-
surface-description primitives:

¢ Homogeneous surface patches—achieved by region
growing methods

& Contour lines—as a result of edge detection methods

* Vertices—given by applying local image operators

2.3 Knowledge base
The main idea of system performance is that one
operates on symbolic descriptions represented as AT-

A linguistic approach to 3-D object recognition

TRIBUTED RELATION STRUCTURES. I distin-
guish three parts of the knowledge base:

e The syntax and semantics of ENTITIES and RE-
LATIONSHIPS between them—from this elements
the SCENE DESCRIPTIONS are built,

+ Knowledge about dependences between entities and
relationships given as so called BACKGROUND
RULES.

» DERIVATION SCHEME—a finite method of de-
riving descriptions one from another.

2.3.1 Scene descriptions. By an ENTITY I mean a
class of scene description primitives, An ENTITY is
defined by two schemas:

s El—vector of ATTRIBUTES:

¢ Geometry functions which specify the location of
entity in 3-D space

e Feature functions giving texture, colour and geo-
metric characteristics

e E2—set of CONSTRAINTS:
» Independent restrictions for attribute values (for
example “little cylinder” means that the attribute
“radius™ is not longer than 1 m).

A RELATIONSHIP between entities is defined by
one scheme:

e R—N-ARY EXPRESSION constraining the attri-
butes of entities (for example, a relationship can rep-
resent an expression which is invariant under linear
space transformations).

How are the entities and relationships represented?
I represent them as LABELS of structure-ncdes or
structure-hyperarcs (the last I call n-EDGES if the re-
lationship is #-ary). The MEANING of labels is in ac-
cordance with the schemas E1, E2 and R. But we need
a language to express these schemas. This goal is ac-
complished by the first-order predicate language—
LS. Hence 1 distinguish the syntax and semantics of
definition schemas for entities and relationships be-
sides the entity- and relationship-representations and
meanings.

An ENTITY INSTANCE occurs if a semantics for
LS is given, which values the vector ofentity attributes,
and these values satisfy the entity constraint set.

A RELATIONSHIP INSTANCE occurs if a seman-
tics for LS is given, which values attributes of all entities
being in this relationship, and these values satisfy the
n-ary expression defining the relationship. Particular
entity and relationship-INSTANCES are represented
by the following:

« (node identifier):{node label)—entity instance

s (n-edge identifiery:(n-edge label) ((node 1 identi-
fier):{node 1 label), ..., (node n identifier):{node
n labely)—relationship instance.

The node- and n-edge-identifiers belong to the set
of Normal numbers &, Hence we handle an enumer-
ated set of entity- and relationship-instances. Now the
correspondence between the neta-syntax {in terms of

429

structure elements) and the syntax of schemas must
be established in order to define the meaning of an
entity instance undirectly by the semantics of its LS-
representation,

The attributes of an entity instance represented as
“Jod” are t'fxk, . . ., t°fx}, where the ! — s are terms
representing expressions which value the variables x},
— s indexed by identifier *k.”

The CONSTRAINTS are represented as LS-for-
mulas over the attribute-variables, xi, . .., xi.

An n-ary EXPRESSION for relationship instance is
represented as an LS-formula over the attribute vari-
ables of all entity instances specified by {node 1 iden-
tifier), . . ., {node # identifier).

An enitity TOPOLOGY HIERARCHY must be dis-
tinguished (as shown in Table 1, for example). I un-
derline the introduced hierarchy so that each entity
can be fuily defined by a set of entities and relationships
of lower levels (Fig. | gives an example).

Each finite set of entity instances from the same to-
pology level and relationship instances among them is
called SCENE DESCRIPTION and is represented by
an attributed structure,

2.3.2 Rules. A BACKGROUND RULE relates two
attributed structures. I want two representation sche-
mas for 3-D solids in CAD-systems to be generalized
by these rules:

¢ The boundary representation (for volumes)
¢ The constructive solid geometry (for constructing
complex solids as assemblies of volumes)

One rule, which relates the meta-syntax, is called
PRODUCTION rule and the other one, which relates
the LS-elements associated with structures, is called
SUBSTITUTION rule. A production is of the following
form:

B<«K, K'—FE,

where B is the left and B’ the right structure isomorphic
class; K, K' are substructure classes, respectively. The
substitution rule has components of type {/x, where ¢
is a term in £.S, and x is a variable representing an
entity-attribute. For all entity instances in B and B,
such components are given.

Some of the entities due to their substitution com-
ponents are called DEFINING. Only variables for de-
fining entities can occur in the terms of this substitution
rule. The substitution for defining an entity is each x/
x, where x stands for entity-attributes.

Table 1. Topology levels of OBREC system

Level Kind of entities used

objects

solids

volumes (shells)

faces '

loops (closed edges) and homogeneous areas
edges and elementar flat hom. areas

vertices, line segments and elementar flat h. areas

=W

430
CEXAMPLE D
Cylinder

Cparalielepiped >

/ \1 F {10p)

{front) F ¢back)

ZAPZ.

l l F{down)

CD LPback »
|
E LP {tronty
L.
LP ¢d
e TP o
e[e T ey
E1 + P2 s
1 gj P3 (linetd {iney
P1
v va Gircle 1) —
Carc 1)
{EXAMPLE -0BJECT
{parcilelepiped) {cylinder) -S0LIDS
{porallelepiped ¥ {eylinder) -VOLUMES

AN AN

Fi F2 F3 F4 F5 F8 F<{top} Fidown>Fifront) F(backy-FACES

4

L.LP1LP2 LP6 LP¢iopyl.downLP{frontLP(backrl QOPS
(c”c'e”(circlez:»
{lined> {arc2)
-EDGES
E{1E2E3E4 ES EG. ... {ine 2)<arc i)
Vi va....... P{ P2P3............... “VERTICES
(1b)

Fig. 1. Object description-lévels: (a) object “EXAMPLE,” (b)
hierarchy of entities describing “EXAMPLE.”

If the entities from the left description are being in-
terpreted on the base of the right description-entities,
they are called SYNTHESIZED entities (interpretation
in a bottom-up manner). If some entities of the right
description are being interpreted, they are called DE-
RIVED entities (top-down interpretation).

2.3.3 Derivations. The DIRECT DERIVATION is

W. KASPRZAK

a transition between two descriptions. To obtain a der-
ivation G = (' one must:

1. Establish a family of structures Bl, B2, ..., Bn,
such that @ is the union of the Bi —s{i=1,..., n).
Intersections K; = Bi N Bj (1 < { < j < n) will arise.

2. Select productions P = {B; < ky, k; = B:} (1
< i ¥ j<n) with ky = ky, kj; = kj; for j < L.

3. Each substructure Kj; of G is replaced by K (1
< i < j < n) and each substructure B; of & is replaced
by B} (f=1,...,n),such that Kj; = Bi' M Bj’'and Kj;,
K; are isomorphic with ky, kj;.

4. The structure G’ is the union of the Bi' — s (i |
=1,...,n.

5. Using the substitution rules associated with pro-
ductions P, if only the defining entities are interpreted,
all other entities of Bi-, Bi' — s can be interpreted.

A formal definition of the syntax part of derivation
is given in [13]. The derivation scheme is illustrated
by Fig. 2 (for n = 3). Two proper subsets of labels must
be distinguished—STARTED and TERMINAL.
CONFIGURATION is each derivation beginning with
a description having only started labels and ending with
a description having only terminal labels.

2.3.4 Restrictions. | restrict my interest to those class
of configurations where each configuration can be de-
composed in several STEPS.

A transition between descriptions from neighbour
fevels is called the CONSTRUCT step. Rules used in
this derivation can have substitutions for synthesized
entities only, or both synthesized and derived. The
second case occurs, if on the reached level a so called
“visibility’ step will be performed.

Rules used in a CONSTRUCTI step have only sub-
stitution for synthesized entities. This step is internal
to one level and is an iterative constructing of descrip-
tions by the same subset of rules, Rules, that have only
substitutions for derived entities, are used in steps in-
ternal to one level:

e Similar entities gluing (GLUING step)

e Approximation of “complex™ entitics (APPROXI-
MATION step)

» Hidden entities elimination (VISIBILITY step)

I call the steps given above REFINEMENT steps, be-

cause they relate semantically equal descriptions, de-
riving more details of them. Each configuration is de-

Fig. 2. Dégivation scheme.

A linguistic approach to 3-D object recognition 431

Table 2. Types of topology-levels

Level Type Refinement steps performed

5 ALFA(Q CONSTRUCT
GLUING
VISIBILITY (elimination of complete

hidden solids)

CONSTRUCT
GLUING
iterative CONSTRUCT

CONSTRUCT

GLUING

VISIBILITY (elimination of faces
hidden by other faces belonging to
the same volume}

CONSTRUCT

GLUING

APPROXIMATION (of curved
homogeneous areas)

VISIBILITY (elimination of hidden
flat hom, areas)

CONSTRUCT

GLUING

APPROXIMATION (of curved edges)

VISIBILITY (elimination of hidden
line edges)

CONSTRUCT
GLUING

4 BETA

3 ALFAO

2 ALFA

l ALFA

0 ALFAQ

composed in steps performed on levels of three types.
A level is called type BETA, if an iterative CON-
STRUCT: step is allowed, but no visibility- and ap-
proximation-steps occur. Levels without iterative
CONSTRUCT! step are called type ALFA or simpler
case ALFAQ (there is no approximation step) (see Ta-
ble 2).

Some auxiliary rules with only synthesized entities
must be given, which allow partly to inverse the re-
finement steps. I call themm GENERALIZATION rules.
They are not used by the derivation scheme, but rep-
resent necessary conditions to interpret the higher level
entities on the base of lower level descriptions.

This generalization rules perform the following:

o Establishing of relationships among a set of entity
instances (CREATE)

s Inversion of approximation (APPROX_INV}

+ Inversion of entity gluing (GLUING_INV)

The inversion of entity hidding is performed by sub-
stitutions for synthesized entities used in CON-
STRUCT step.

2.4 Recognition strategy

The recognition’s GOAL is to interpret a given input
set in terms of object instances. The METHOD used
is a linguistic analysis—one must achieve a configu-
ration over the input (sub-)set.

A two-directional syntactic-semantic analysis is per-
formed (Fig. 3):

1. Interpretation of all synthesized entities of the
configuration, by using generalization rules and CON-

STRUCT-parts of substitutions for synthesized entities
{bottom-up analysis),

2. Top-down derivation with derived entities-inter-
pretation and synthesized entities-verification.

The verification means that some of the descriptions
used in the first analysis must be included in appro-
priate descriptions from the second one. These are de-
scriptions related by CONSTRUCT (CONSTRUCTI)
steps and CREATE rules. The analysis steps on a par-
ticular level are pictured in Fig. 4.

Now we explain a strategy for achieving the recog-
nition’s goal, Imperatives of a recognition strategy in
an OBREC system are the following:

* Multiple ambiguous interpretations of input data can
be achieved.
e There need not be an interpretation of all input data.

Partly and ambiguous interpretations are allowed, since
OBREC is only a subsystem and the complete recog-
nition is controlled by the high-level processing.

I define the OBREC-recognition strategy as consist-
ing of two sequential processes (71, 72) and one cy-
clical process (T3) (Fig. 5).

T1 is a hypothesis generation process. All interpre-
tations of possible synthesized configuration-entities
on the base of generalization rules and synthesized parts
of CONSTRUCT steps are achieved. The applied syn-
thesized parts in CONSTRUCT(i) steps and entity in-
stances related by it built a so-called HYPOTHESIS
NET with object instances being the highest layer.

T1: Input_Description —
HYPOTHESIS_NET with H(6) = (0b,. .., 0bg).

T2 is an aggregation of object instances into a family
of (partly) object interpretations.

T2: H{oby,...,0b)—~S(\,... Ip),JC2"

T3 is a search in the space of achieved interpretations
for finding a best one. One chooses a best interpretation
first and constrains the entity instances building a
Start_description for top-down refinement (731). Then

(Start - description) Level &
!
|
|
i
1
I
i g |
hottam -up 1\ top - down I
generalizatior| 1 refinement l
4 1
I
!
'
1
|
I
Level O

{ Input = description)

Fig. 3. Two-directional analysis.

432 W. KASPRZAK

APPROXIMATION

APPROX - IN VISIBILITY

terminal .
description

CREATE

CREAT

{4c)
Fig. 4. Analysis on level [of type: {a) ALFAQ, (b) ALFA, (c) BETA.

a derivation process is performed, controtled by ap-
propriate hypothesis sub-net (732). If a proper config-
uration is established, the best interpretation is found.
If not, the interpretation space will be modified and
the cycle started again (733).

73 S(y,....I0—~>L

All elements of the OBREC-knowledge base will be
described in an Object Specification Language (OSL).

ferminal-
description

GLUING

GLUING-IN

VISIBILITY

terminal .
description

CREATE

iterative
CONSTRUCT i

terminal
description

.~

The recognition strategy will actasa linguistic analysis
of OSL-expressions.

3. THE OSL-GRAMMAR
The ordered pair {g,, gg), with g, being a finite set
of node-identifiers and g being a finite set of identifiers
for n-edges between nodes (2, 3, ..., N} from g,, is
called RELATION STRUCTURE of level N (short:
N-structure).

A linguistic approach to 3-D object recognition

{e}

Interpretation family

Hypothesis_Net Tz3 Best interpretation

H-“\t
T

Input_Description

lnpyl

Fig. 5. Recognition strategy.

Quiput

T3

Qutput

Interpretation

Let {V,, V¢) be a pair of finite label sets, g be some
N-structure, (., mzg) be a pair of mappings—mi,:
g4 Vy, mg: ge = Ve, The pair (g, (m,, mg)) is a
labeled relation structure, which I call FN-structure.
Let VNSTR denotes the set of all PN-structures. The
base of OSL syntax is a node-controlled parallel struc-
ture grammar.

3.1 Node-controlled parallel structure grammar (nPSG)
Now I give an extension of graph grammars[14-15].
A production will be defined as a triple:

(left node, right substructure; insert rule).

It relates nodes of input structure with substructures
of output structure, and determines how n-edges be-
tween left nodes of productions applied in the direct
derivation can be replaced by n-edges between right
substructures.

A set of BASE OPERATORS must be given first:

T={LJAEV} U{RJAE VL]
By OPERATORS I mean words over the alphabet:
orP=V,UTU{(,),C, L},

such that T is the set of base operators; if X is an op-
erator, then CX, aX, X for a € U, also are; if X, ¥ are
operators, then XY, XU ¥, XM Y also are,

Definition 1. Let H € VNSTR. If O is an operator
and g € H,, then the NEIGHBORHOOD O{a) means
the following:

1., 0= L,or Q= R,;—the neighborhood is a set of
node-chains arriving in n-edges with label A4, from
which the n-edge comes to node g or to which the »n-
edge goes from node a.

2. O = CA—chains of nodes from H, which do not
belong to Ala).

3. O=v,..., 0, AyEVY, i=1,..., m)-—node-
chains from A{a), with node-labels specified at least by
oneof v, ..., Upn.

4. O = A N I'—node-chains which belong to A(a)
and I'(a).

CAG 1l:4-H

433

5. 0 = A U I'—node-chains which belong to A{a)
or I'(a).
6. O = J—all nodes from H.

; 0=_={1, if Aa)=0
' 0, if Ma)#0

8. O = AT'—node-chains from neighborhood A{a)
of each g € T'(a).

Without point (7) the definition of neighborhood is
standard.)

Definition 2. NODED STRUCTURAL production
is a triple, (B,, B,;), where B,, B, € VNSTR and B,
has only one node; S = {S,,, ..., S} is an INSERT
rule such that

SE(={!eprq} (’I=1)'-~)k): eIEVE:

Pi &

I, = L{ (O@); Vi), o= L{ (Vs O(a))
= ~

are called Input- and output-inserting COMPO-
NENTS; 0O;(a) is the neighborhood of node a € B,;
V.4, Vs—chains of nodes from B,.

Clearly a production is APPLICABLE to some node
“fA” (i € N) only if the production’s left node is
labeled by A,

Example |. Let a VN-structure & and a production,
such as pictured in Fig. 6 are given. The neighborhoods
defined in structure G are then:

dR(1)=1{2}, Lg(1)=0, Rg(1)={23}.

Definition 3. H' is DIRECTLY DERIVABLE from
H (H — H') by the set of noded structural produc-
tions, P(V).

There exist productions, py, . . .
productions from P(}") and

k
o H, = U a,..—set of left nodes;

m=1

, P, isomorphic with

skl)

S « {LA : LB}) La * (456;dRE1)) ,
lg = (Lg1);156) u{Rg(1);156)

Fig. 6. Example of a noded structural production.

434

I
e H), = U A,,—set of right-substructure nedes;

m=1
k

OH:E=[

m=

Bm} U B,
|
where B'is a set of inserted n-edges, defined as follows:

ela,...,a)&€l .
(me(e)=EEVg,a, €EH (i=1,...,P))

=

There is a decomposition of (@,* - -@}—X, ...
Xs—and “s” insert rules with the Sg-components;
Sk, ..., S having

TE=(Xj;AE,(ﬂj))ES’jE,1£=(B£j(aj);Xj)ES’}s,
such that
for s = I:
a}EA4g(a"), a}E€Bgla")

fors> 1;

exist Yo, E4g(a’), Y, EBzla’)
(YRj:#aj’(YLj%aj) (.]2 1:- --»S)

and

~Yy,-{a'} Ya= -+ ==Y {a%} Y

(Y1,= Yr,=5).
s H' has no multiple n-edges.

Direct derivation is a relation between two equa-
tional classes of VN-structures. Figure 7 shows a simple
derivation scheme.

Definition 4. A NODE-CONTROLLED parallel
structure grammar (nPSG) is a triple (SP, R®, =),
where SP = (V7, V7, P, V) is a system of noded struc-
tural productions with non-terminal (N), terminal (7'}
and start () labels, RS = U R is a finite family of
started PN-structures with ‘the same node set and
m;(Ry) = V4, and — is a direct derivation by pro-
ductions from P.

L !;
N
l,l\,f\

| |

|

' Lo 1 1 1

I 154 | \ y

G ae'z E 3 E) H
Bry Bry Brs

Fig. 7. A simple direct derivation scheme.

W, KASPRZAK

——
nol possible
in nP3G

possible in
nPSsG

Fig. 8. Example of direct derivation-limitations in nPSG.

How usual the set of SENTENCES of some gram-
mar T € nPSG is: L{T) = {H € VINSTR|R' € R,
R —* H'}, where “—*" is the reflexive and transitive
closure of relation “—-." -

nPSG over the alphabet V is called COMPLETE if
for all node Iabels from V at least one applicable pro-
duction exist. The completeness assures that each der-
ivation is carried on.

nPSG is called MONOTONICAL if all productions
have proper right substructures.

nPSG is called SYNCHRONIZED if terminal labels
appear only in the last direct derivation, when sentences
are derived, It can be proved that for each nPSG an
equal synchronized nPSG exist. Equality of grammars
means both generate the same set of sentences.

Definition 5. A pair (p, K), where p is a noded struc-
tural production and K€ VNSTR is called production
with APPLICATION CONTEXT. {p, K} is APPLI-
CABLE in H € VNSTR to node “a” iff p is applicable
to “a” and there is no k = K, such that ¢ € kand &
C H.

The application context specifies some node-neigh-
borhood conditions for applying a production. It is in
no terms similar to the context for string grammars.

It can be proved, that for each nPSG over mono-
tonical productions with application context an equal
nPSG exists. I have proved also[16] that for each nPSG
over productions with application contexts an equal
nPSG exists, if nonmonotonical productiqns are ap-
plied only to nodes, which are neighbors of at least
one node being replaced by a proper substructure. This
condition will be satisfied in our applications.

3.2 Virtual nPSG—CONSTRUCT step

nPSG, being a base of attributed grammar, is not
always effective. One is often not able to distinguish
between different instances of the same entity (different
nodes having the same label) for replacing n-edges. For
example as shown in Fig. 8, we can not derive from

A linguistic approach to 3-D object recognition

structure A the structure H'. The smallest derivable
structure in nPSG, which includes H', is H", We have
to define a wider class of grammars, in some sense
non-deterministical replacing n-edges.

Deftnition 5. Let G € VNSTR, a € G4, O—neigh-
borhood operator. If the neighborhood O(g) is non-
empty, then the VIRTUAL neighborhood of node a
in G (denoted Ow(a)) is the set of O{a)-subsets.

A production with at least one virtual neighborhood
is called VIRTUAL production. '

Definition 6. A VIRTUAL direct derivation is each
direct derivation, if exactly one element from each vir-
tual neighborhood was chosen in order to insert n-
edges.

The CONSTRUCT step will be performed by virtual
productions, Depending on the semantics of nodes, a
semantic rule will determine exactly one value for each
used virtual neighborhood.

3.3 The GLUING- and VISIBILITY-steps

Let us distinguish a subset of edge labels called ter-
minal IDENTITY labels and denote them as follows:
ID = {IDAlAE V,}.

Definition 7. Let B € VNSTR,; ay, a; € By; mula))
= mya;) = A, o{a;, @) € Bg; mg(o) = IDA. The
GLUING of nodes a,, a; IN B {denoted GLU 4[B(q,,
a,)]) is a structure, D, defined as follows:

Dy=B,—{a,a}Uaymya)=4;

Dy consists of n-edges from Bg, where the nodes a,,
a, were replaced by node a, multiple n-edges were re-
duced to one of them and all n-edges passing both a,,
a, were simultaneously removed.

Each gluing operation represented by a terminal
identity edge can be “simulated” equal up to isomor-
phism by a derivation step in nPSG. But to achieve
that from structures derived by applying a set of noded
productions, only these are “proper,” which simulate
the gluing operations, we have to use productions with
some application conditions.

Two gluings GLU [B(a,, a,)], GLU{B{as, a;)] are
called INDEPENDENT, if at most their first nodes are
the same. Gluings represented by edges with various
labels are always independent. Two and more inde-
pendent gluings can be simulated parallel in one der-
ivation step.

Definition 8. Let D € VNSTR. The STEP of
GLUING of nodes in D is each composition of all
gluings represented in D (denoted GLU(D)).

It is easy to see that the composition of gluings is
transitive, hence the step of gluing nodes defines some
class of isomorphic VN-structures, One can prove what
follows:

FProposition 9. There exists a set of noded structural
productions with application contexts, which “simu-
lates” equal up to isomorphism the gluing step, if the
input structure satisfies the following restriction:

“In each clique, due to edges labeled from 1D, there is exactly
one node, which is not a second node of any gluing operation;
and there are no multiple edges.”

433

Structures we will deal with satisfy the restriction
given above. Now let us distinguish an another set of
edge labels called HIDING labels (denoted as HID),
having terminal (HID”) and nonterminal (HID?) parts.
A function

f_hid: VX V,— 2107
gives “‘proper” labéling dependent from the node-labels
of the edge being labeled.

Definition 10. Let H € VNSTR; i, j € H,; m,(i)
= A, m(J) = By o,(J,) € Hg, me(0) = T € [“hid(4,
B) € HID.

The VISIBILITY of node i specified by edge o, in
H is an operation giving D € VNSTR, defined as fol-
lows (denoted D = VISy[H(i:a — j:0)]):

DA=[HA—{f}]U{i|,---,iL};

{(j=1,...,L) andL depends upon (7,4, B).

De=[Hg— {0:} —HE]UH’,{-UHZ—,
where

m (i) = A;

HECHg— {0,} = n-edges having node *“i"";
L

icU {eilee Hi, me(e) @ HIDT
k=1

Lty

and node ™ is replaced by i}
L
wreU {eilec HE, mele)
k=1

EHID" and node “i™ is replaced by “i;”"};

me(ek)
_ [mete), if e,SHY
T, if eyeH: (T'Ef_hid(4,) foreifis, i}.

The operation defined above is nondeterministic,
since it specifies a family of possible structures D. Each
n-edge in H having the first node of VIS operation,
can be replaced by at most L n-edges, maybe various
labeled.

Example 2. Let (hta) € V, specifies a homogeneous
triangle area.

JS-hid({hta), (hiay) = {11, ..., 19} is the set of pos-
sible hidding relations between two areas (Fig. 9(a)).

A structure /f with two hiding edges shall be given:

245 [H)

o = 0 <« 0
3hay 1:{hay 2{htay

describing the situation pictured in Fig. 9(b).

If we realize the operation represented by edge I:71,
then one achieves a structure D: D, = H, — {1}
U {ol, 02, 03, 04}, with the edge 2:¢5 being replaced
by only one edge 3:5(3:{hta), o4:{htay).

Let two visibility operations be given:

Y-
W 4\
&

(9a)

2:4hig?
4:{hla?

lVIS”

OQ‘CMD)

3: thiay

3:iha)

{8b}

Fig. 9. Example of visibility operation: (a) some hiding situ-
ations for two triangle areas, (b) operation VIS,,.

“w

D1 =VIS, [H(i:al —j:b1)],
D2 = VIS [H(w:a2 — z:b2)).

Three types of their dependence accur:

a. At most, the second nodes are the same (j = z).
If the set of n-edges with terminal hiding labels passing
simultaneously the first nodes {#, w) is empty, then these
two visibility operations are called INDEPENDENT.
Any independent operations can be realized simulta-
neously.

b. The first nodes are the same. While performing
one operation we possibly change the other. These op-
erations can not be performed in parallel.

¢. The first node of operation is the same as the
second of the other operation. This is the most com-
plicated case, and two operations have to be performed
sequentially.

We want the set of visibility operations to be tran-
sitive and a VN-structure that is REGULARLY HID-

W. KASPRZAK

DEN (all compositions of all visibility operations spec-
ified in H will result in isomorphic structures).

Definition 11. The VISIBILITY STEP in H
& VNSTR is each composition of all visibility opera-
tions specified in H (denoted VIS(H)).

I proofed as follows:

Proposition 12. If D € YNSTR do not have multiple
n-edges, and n-edges do not create cycles in D, then a
set of virtual productions with application context (Py)
exists and satisfies:

1. If H € VIS(D) then (quasi-visibility)

HEGVIS(D)= {HE V'NSTR|V'
= (V4 Ve—HIDT), D(—> J*H },

where “—_” means virtual direct derivation with Py;;

2. If the semantic rule SEM, which determines
whether the virtual neighborhoods, is compatible with
the semantics of visibility operations then

VIS(D) = {HE V'NSTR|V*

=(V,, Ve—HID"), D(zp)*H },

SE@

where “—,.” means the virtual direct derivation —,

o
in which the values of virtual neighborhoods are de-
termined by SEM.

3.4 Syntax restrictions

Definition 13. The system {SP, Psy, Pu, RS, w“>

is called VIRTUAL nPSG WITH GLUING AND
VISIBILITY (dencted nPSG#, 14), where

SP = system of virtual noded structural productions;
Pg; = finite set of productions with application con-
texts simulating the gluing steps for 1D C V¥,
Py, = finite set of virtual productions simulating the
quasi-visibility step for HID C ¥¥;
RS = (R"cs, = a finite family of started ¥N-structures
over the same set of nodes; m (R = V5 (i
oL € Sty
.= composite direct derivation being one of the
following steps:
a. direct derivation “—_” by productions
from P,
b. the gluing step (GLU) simulated by Pg;;
c. the quasi-visibility step {qVIS) simulated
by Pw.
The language generated by grammar & from class
ﬂPSGEL'w is
L(G)={HEVTNSTR|IR'C RS, R wu)*H }.
If conditions given in propositions (8) and (12) are
satisfied by grammar G, then

GCnPSGe,

A linguistic approach to 3-D object recognition

A language of each nPSG® grammar over a mono-
tonica! production set is deterministic. This means we
always can prove whether a given structure belongs to
such language. Due to the monotonicity of derived
nodes we can establish in a finite number of steps
if actual derivation can reach a given structure.
nPSG¢; yr has non-monotonical productions. But re-
stricting the number of gluing- and quasi-visibility steps
occurring in each language derivation to be finite, the
problem will be deterministic. The OSL-grammar will
be some subclass of deterministic nPSG¥; vy grammar,
as specified by syntax restrictions given next.

1. OSL-grammar is a HIERARCHICAL

nPSGé; i1, which means:

(a) SP consists of SPQ), ..., SP(W — 1} (W
e N

W—i

v =U (rinyurtinu o)), vT=vToy
I=1

VS = VS (W—1);

P= L:J P,

I=0

W-1

(Mﬂn=HHﬂm IDU) C V().

W-1
mm=gmwrm%cmn

(d) Atmost one GLU- and qVIS-step occur at each
level L

(e) All productions applied in a direct derivation
belong to one subset, P(J).

2. The family of started structures consists of N-
isomorphic VN-structures vatying by n-edge labeling
only. Each n-edge has some label E C'V, or a comple-
mentary label EC Vzand V= V.U V.

3. The derivations at one level are of two general
types:

ALFA: G [=, (1) GLU() - (—, (1)y* - qVIS())G

{G'—terminal structure at level I),

Recursive derivations perform approximation of
“complex” nodes. If at level I primary nodes exist only,
a subtype arises:

ALFAO: G™*'[=,(I)- GLU()- qVIS(N]G’

BETA: G™'[—, (I)- GLU{)+ (~>, (I))*G".

4, The set P.(I) at level of type ALFA is further

specified by:

ALD: On level of type ALFAO productions from the
set P,.(I) can be applied only to level 7 + 1,
terminal structures. They perform the CON-
STRUCT step.

437

U P

asVI+1)

Poll)=

The right structures of productions from P(a)
have a common part J called REPRESEN-
TATIVE of node labeled by “a,” which do
not contain identity or terminal-gluing labeled
edges.

The variable parts are called LOCATION
structures and consist only of edges labeled
by ID(I) or HID*(I).

The same inserting rule is generally associated
with each production from P(z). Some of the
inserting components can be reduced from
the rule for particular production.

If the set of “complex” node labels at level f
is not empty (V5(I) # @), then this level is of
type ALFA. Besides P,,{I) the set

P,,g(I)=(U Pga)U(U P,-,,b)

2=V bV

ALL

exists, where

P, = set of productions performing an AP-
PROXIMATION step for nodes la-
beled by “a™;

P, = identity productions for level [, ter-
minal nodes.

Example 3. Productions from P,(I) used in CON-
STRUCT steps for object (Alfa-example) = {*“paral-
lelepiped” -+ “tetrahedron™} (Fig. 10(a)) can be as fol-
lows:

I=0

{v) (vertices), {sI) straight line € V7(0);

{p) (start point), {e) (end point) € V£0);

(!> (line segment) € V(1)

Juy = the representative of node “line segment”
(Fig. 10(b)).

There is one production;

; payi= ({00}, T3 S)-

= 1:

{cvy (common vertices), {cop) (coplanar), (san)
(straight angle),

{eq) (equal), {pl) (parallel), {nco) (not complete
segment) € Vg(1);

(ev) € ID(1);

{nco) € HID(1);

Representatives and productions for:

{¢) (triangle), {ry (rectangle), (sg) (square)
€ V1)

J(I)s J(r)s J(.rq) (Flg IO(C)):

One production for () — pey:= ({0:(0)}, J¢i5 S)-

Two productions for {r) — ply:= ({0:{r)), Jens
59, where S, §? varies due to assumption
which pair of vertices with segment fragments
must be seen (some visibility operations can
not occur). One production for {sg) — D¢y
= ({0:(sa)}, Sisys S)-

438 W. KASPRZAK

ey
1:{v) 2:4v)

1:{p} 2:{e)

3:45L)

{(10a) (10b)

JE1 EH S

Jotty
1:4ins?

121> 2:tha)

3:(cel

J&ry

Jrfr:
1:kinsy

1% 2Xha)

3:(cel)

Hsat? 1:{ins>

1:¢5q) 2:Xhad

3:xKcely

{10¢) ($0d)

IiTer 301

toody /TN oedy
tiond d $i_an)
413 o P2t

1,2:(ne>

1:{Te'> 2:4Pg')

J(Po) I oconsists of adge sets for sach node
(IS 44 B R TIL FOWN. .8

(10f)

1:013 (ced)

-

Fipay

5 4:
. 3 Fig. 10. Example of ALFA-type productions. {a) Object (Alfa-
o)l ndots example), (b) Representative on level 0, (c) Representatives
v Ghaled on level |, (d) Representatives on level 2, (¢) Representa-
N B tives and location-structures on level 3, (f) Representative
{10e) on level 5.
I=2: _ (ha) (homogenous area) € Vi(2);
{6, {r), {59, (hta) (homogenous triangle area) {ins) (inside of), {cel) (common boundary ele-
E Vi), ment), {cbou) (common boundary) € V(2),

A linguistic approach to 3-D object recognition 439

{¢f) (triangle face), (1) (rectangle face), {sqfy Example 4. Productions of type BETA define the
(square face) € VI(3); construction of solid “bottle” (Fig. i1{a)) from vol-
Only one production for each {¢/', {rf'}, {saf) umes. : ’

exists, with representatives like given on Fig. I=4
10(d). {eyl) (cylinder), {ell) (ellipsoid) € ri4y,
I=3 : {bd) (body) € Vi(4);

{ced) {common edge), {i_an) (intersection angle
= 60°),

{h_tf) (hiding of triangle face), (h_rfy (hiding
of rectangle face), {par_f") (parallelity of faces),
{eq_f") (equality of faces) € V&(3);

{ced) € ID(3); {htf), (hf S € HID'(3);

(Te) (tetrahedron), (Pa) (parallclepiped)
e V4.

One production for each {Te), {Pa) (Fig. 10(e)):

perey= ({0:{T)}, Jerey U Fereys S), where

Jire is the representative and Fr the lo-
. cation structure (assuming that only three
faces are visible).

Pepay= ({0:<Pa)}, J(pa> U F(pa>; S), where

Jepay 15 the representative and Fip,y the lo-
cation structure (assuming that only three
faces are visible).

I=4

There is only relabeling: {Te) — {Te"), {Pa)y —
(Pa">.

=35

{ne) (near by} € Vg(5); (ex) (object “Alfa-ex-

ample”) € V(6).
Jeexs (Fig. 10(f)).

5. The set P{{)—productions of BETA-type level

I is specified by:
BEL: Py(l} = Pa(I}V Pgll).

BE2: Pu(l) = U p, (This set performs the

asV 1)

CONSTRUCT step.)

The right structure of each production p, ei-
ther has only level I-terminal labeled nodes
or has some of them labeled level I-nonter-
minal.

BE3: Productions from Pg(I) perform the CON-
STRUCTI step.

Each nonterminal node can be iteratively ex-
panded into itself and one terminal node (ex-

{bot) (bottle) € V(5); :

{ecsym) (common symmetry axis), {eq) (equal
dimensions), {sm) (smaller cross-section), {nt)
(is not touching), {tou) (touching by cross-sec-
tions) € Ve{4);

There is only one production for {bot)-

Pvory:=({0:{bot)}, B, S)E Paol(4),
where:

BE = {1:{eyl), 2:(cyl), 3:(bd)},
BV =pkUb, (Fig. 11(b)).

The set Pg(4) besides identity productions for
level 4—terminal nodes contain one “expand-
ing” production, Peery,1, and one “terminating”
production P, r:

P = ({0:bd)}, BE™; 8, U 8",

B = {1:(elt), 2:{bd)),
B,?;”‘) (Fig. 11{c)) (in general denoted B,, where
“;” is the identifier of successively derived node

{ell});
S}, has inserting components which allow to de-
rive n-edge sets:

bl (Fig. 11(d)), b}orb;(Fig. 11(e))
and to transfer the previously derived set B;.

Pooyri= ({0:(db)}, { 1:el) 5 S5 US™),

S, has components, which allow to transfer the
previously derived sets of type by and B;.

The minimal structure of family for {bot) con-
tains only one ellipsoid (Fig. 11(f)). From this

structure the bottom-up patsing on level 4 for
node {bot) will start.
Thus a generative grammar was defined that specifies
Appropriately the edges have an iterative the syntax of RULES and DERIVATIONS in an OB-
construction. REC system.

panding productions) or only into terminal
one (terminating productions).

From a level I + 1—terminal node only level

I—terminal structures from one family of ~3-5 Generalization r ules
structures can be derived: Additional assumptions must be done.

G1: For each level of type ALFA, to each set P,
C P.4(I) an assistant set of structures KER,
called kernel set is given, satisfying the follow-
ing:

For example, Glk;, k, . . ., k), where ky, . . .,
k; = number of recursive-nodes-occurrencies.

For each family a minimal structure is if k;
= e = kL =1,
I found such sets of proeductions powerful enough » Each kernel is a substructure of the represen-
to describe solids with varying structure by helding a tative, associated with one production from
parsing algorithm simple. FP,.

440

{cylinder fop)

{ iterative) .

{1wo - sides cutted
ellipsoid »

{cylinder down?

(11a)
By
{eq)
1:¢elld 2:(bd)
{loud
(1ic)
4
By
1 deyiy 2 «Keyld

3:dell)

3:celly
(11e)

e (d), d € KER)([d\]. = [d:]) = ((4)]~
z [d2]~)l([d2]~ z [dl]n-u)-

The kernels are necessary conditions for recognizing
a representative,

Example 5. Kernels associated with productions
from Example 3 are:

I=0
KERy = Jyy = one kemnel;
r=1:

One kernel for {¢) represents the situation, where
only one side of triangle (Fig. 12(a)) is completely
visible,
Two kernels for {r) represent the situations, where
two vertices with edge-fragments are visible {Fig.
12 (b))
One kernel for (sg) represent the same condition.
I=2:

W. KASPRZAK

by
. {nt) '
4:eyld 2i4eyl?
“top " “ bottom "
{csym?
by

2:¢cyl)

{sm)

3:{bd>
(14d}
N:
{sm?>
1:deyl> 2:cyl>
{tou?
{sm? Lsmd

3Kell)
(i19)

Fig. 11. Example of BETA-type productions. (a) Solid {bottle),
(b) Structure B9, (c) Structure B;, (d) Structure by, (¢)
Structure &} or b}, (f) Minimal structure N.

There is one kernel for each (), {rf), {saf)
(Fig. 12(c)). They allow hypothesizing, if loops of
edges with included fragments of homogeneous
areas are given.
I=3:
One kernel for each (T}, (Pa) (Fig. 12(d)). The
situation recognized by them is that twq (or three)
faces are visible. :
I=5
KER(GX> = J(,x>.

G2: The APPROX-INV step for one “complex”
node is a parsing by productions Pjg,-like de-
noted P,,;{(I) (without virtual operators). There
must been relationships between sets:

L (a)—level I—terminal structures derivable
from node a € V5(I) by productions
Paz('{):

A linguistic approach to 3-D object recognition

Kar(” M
3:KL)
2:{cv}
LHA .
w 2xL
4:lcap?
(12a}
|
Kergey
4XL ¢san) <ov) E-HAS
{pl2 (¥.18]
{san) {san}
L {san} <{cv) 2:4L)
Ker<2r)
441} {san? 3K
{san) [{pl} <{pl> |{san}
{ovd {ov)
10 Tsans 240
{12b)
Keray {ins?»
121 ©2:<ha>
{el}
Kerg gy €ins}
10 ©2 ha)
{cel)
-~
Keregany ¢ Cins)
14> Qz Xhad
{cel}
f12c)
Ker¢7a>

2 ity

Cend?
<i_gn)

A

Lan

3:4rf)

Kergpqy
{cad)
{ced)

.

1:{rt) {ced) 2:rf>

tizd)

Fig. 12, Kernel structures for object {Alfa-example}: (a) for
triangle, {b) for rectangle, (c) for faces, (d) for volumes.

441

L, ,i(a)—level I—terminal structures derivable
from this node by productions P{7); .

specified as follows:

1. L(a) C L@

2. if (str C Lg{@) then (3ap € Ly(a), str
C ap).

4. SEMANTICS OF OSL
How usual I want the process of meaning evaluation
for each language sentence to be depends upon the
derivation “history™ of the given sentence.

4.1 Attributed grammar

I use a many sorted First Order Predicate Language
(LS). Its definition follows the standard, so I introduce
only the notation here. A signature of language LS
consists of sets of identifiers for the following;

e Sorts S

s Functions F

¢ Relations R

¢ Constants C

» Special symbols

One starts with introducing variables x{ i € N, s
€ 8) in order to define the sets of terms—7 and for-

mulas—F.

A substitution for variables is denoted by O = {t,/
Uy, « v . s k), Where ¢ stands for terms, and v; for
variables ({ = 1, ..., k). A conventional proof system
can be given by means of axioms and two deduction
rules: modus ponens and generalization.

Then an INTERPRETATION function ¢ for first-
order language and a REALIZATION Z (semantic
de.aain of LS) are introduced, defining the Tarski se-
mantics:

(Z,9)# ¥, where YEF.

The nodes of ¥N-structures should be linked with
subsets of sorts from S. A family of sort-subset-pairs

H=(H(w,Ww)) wwes*

is called S-DICTIONARY, and each symbol h € H{w;
W) is called a S-attributed symbol with synthesized sorts
‘w’ and derived sorts ‘Ww’.
The S-dictionary induces families of:
S-ATTRIBUTED VARIABLES

XH={X\h=(x{,...,x¥"VREH(S" * * Sx3Skn1
<o o5y xFEX(= 1,. Lk nkn=0,1EN),

S-ATTRIBUTED SUBSTITUTIONS

0X={0X, =(t/x} . . s Leent X5

EH(s -~ SkiSknr * * Sk, XFEXREXH, 1

ET(i=1,...,. k+mk n=0,lEN)}.

We restrict our interest only to symbols from H(w,

442

A), H(A, w), H(w, W) if w = W and to constants from
H(X\, N), where “A\” stands for “null.”

Definition 14. A REALIZATION of language F(LS)
{an ATTRIBUTED noded parallel structure grammar)
is each system

A = (G, (sym, Term), (RP, m), Z},
where

s (7 isa nPSG* grammar over productions from F(V);
s (sym, Term) is a pair of coincidence functions be-
tween FN-structures and elements from LS defined
as follows:
¢ sym = (syma, syma’, syme),
syma: ¥V, ~» H(w, X\); syma: V; = H(}, w) and
‘(syma(@) = syma'(a) or syma(a} = A or
syma’(a) = A);
syme: Vz— {[¥]}, ¥ €F.
* Term = (hA, 14, tg),
hd: XH — NxV,, hd(Xih) =
= (syma(a), syma'(a));
Lo NxV,— F, t(l:a) = Y, (Xh), h = symal(a);
te NxVp—F,tlliellicay,. . Jead)=Tdxhy
.+ - Xih), where By = syma(a), i=1,..., k
e RPis a finite set of SUBSTITUTION RULES

l:a for h

RP = {rp=(0X;+ + +0Xp; OXpr1+ » » OXpr)
€ 6X* X 0.X*};

where derived elements of OX, + - - OX; and synthe-

sized elements of OX,.,« + + OXp4, 2re defining and

all others are applying, satisfying;

* All defining elements are of form x/x.

-» All variables occurring in applying elements occur

also in defining elements in the same rule. '
* pp 28V RP is a mapping of production-subsets
into substitution rules which satisfies the map-
ping hA. ~
e 7 is a realization of LS.

‘Due to the attributation, the semantics of a config-
uration will be given indirectly by the interpretation
of LS-components associated with this configuration.

The language defined by the attributed RGS will
consists of pairs: ~

({sentence), {meaning)).

Definition 15. Let Q be an attributed RGS, and G
C Qisan RGS. Let A € L(G), K be a configuration in
Q whose last structure is 4. The MEANING of sentence
h is each vector of values (“val”) for S-attributed vari-
ables associated with start_structure-nodes given by
some interpretation ¢ and (K) = 1.

Two language expressions, (1, ml), (h2, m2), are
“semantically equal,” if there exist configurations kI,
k2 and interpretations ¢l, 2, satisfying: (pl(k1)
= g2(k2) = DA (ml = m2).”

4.2 Semantic restrictions
In accordance with the syntax, there are some se-
mantic restrictions.

W. KASPRZAK

S1. for
EEVS(te(l:EY =¥ — tp(1:E) = ~¥).

(For each interpretation at most one start_structure is
semantically “true.”)
S52. for

a€ VL and syma(@)=h(s,: - 5N
all domains 4%, ..., A% must be FINITE.

S2 is a necessary condition for the set of language-
expressions to be enumerative. This is reality, since the
scene is discrete.

S$3. The mapping m is further specified by the fol-
lowing:

a. Ifat direct derivations —, =, only monotonical
productions are applied, then with each such
production a substitution rule from type

(8Xo;0X, - - - 8X,)EOX X 0X*

is associated.

b. With each pair of productions performing the
gluing or quasi-visibility operation (one of which
is an erasing production), one¢ substitution rule
is associated:

(8X,0X2;0X3)E8X* X 0X (forgluing),

(6X,,0%:;0X;- + + 0X)

E6X2X0X*2 (for visibility).
Other productions satisfy point a.
S§3. The S-attributed variables in substitution rules
are

¢ Only synthesized in rules associated with productions
from Py(l}

e Only derived in rules associated with Pz, Py and
PugD)

e Synthesized and/or derived in rules associated with
Poo(l)

5. CONCLUSIONS

In this paper I have studied a subtask of depth-map
and intensity-image understanding. Its model in terms
of attributed structure grammar was presented. In this
way an extension of 2-dimensional pattern recognition
models for recognition objects in discrete 3-D space
was done. The study of approximation- and approx-
inv-steps is still needed.

Some implications for the design of specialized
hardware arise. Controlled by a host computer, a multi-
processor facility can help effectively to perform the
recognition strategy:

¢ The direct derivation in nPSG shall be performed
in parallel.

e All predicates of LS language can be interpreted by
specialized hardware.

e Matching of VN-structures shall be a task for asso-
ciative processors.

A linguistic approach to 3-D object recognition

REFERENCES

. A. R.Hanson and E. M. Riseman (Eds.), Computer Vision
Systems Academic Press, New York (1978).

. R. O. Duda and P. E. Han, Pattern Classification and
Scene Analysis. Wiley, New York (1973).

. J. Kittler, K. S. Fu and L. F. Pau (Eds.), Pattern recog-
nition theory and applications. Proceedings of the NATO
Advanced Study North-Holland, Dordrecht (1982).

. K. 8. Fu, Syntactic Metheds in Pattern Recognition. Ac-
ademic Press, New York (1974).

. M. G. Thomason, Syntactic/semantic techniques in pat-
tern recognition. A survey. Int. Journal Computer Infor-
mation Sciences 11, 75-100 (1982).

. R. S. Michalski, Pattern recognition as rule-guided in-
ductive inference. JEEE Trans. Pattern Anal. Machine
Intelligence 2, 349-360 (1980).

. R. M. Haralick, Using perspective transformations in
scene analysis. Computer Graphics and Image Pracessing
13, 191-221 (1980).

. Y. Yakimowsky and R. Cunningham, A system for ex-
tractmg three-dimensional measurements from a sterec-
pair of TV camera. Computer Graphics and Image Pro-
cessing 7, 195-210 (1978).

. Jarvis, R. A., A perspective on range finding techniques

10.

13,

14,

15.

16.

443

for computer vision. IEEE Trans. Pattern Anal. Machine
Intelligence 5, 112-139 (1983).

D. Nitzan, A. E. Brain and R. O. Duda, The measurement
and use of registered reflectance and range “data in scene
analysis. Proceedings of the IEEE 65, 206-220 (1977).

. B. Neumann, Knowledge sources for understanding and

describing image sequences. In: W. Wahister, GWAI-82.
6-th German Workshop on Artificial Intelligence, 1-21.
Informatik Fachberichte, IfB 58, Springer Vg., Berlin
(1982).

. H. Niemann, Pattern analysis. Springer Series in Infor-

mation Sciences 4, Springer Vg, Berlin (1981).

H. Ehris and H.-J. Kreowski, Parallel graph grammars.
In: Automata Languages Development, pp. 425-442., A,
Lindenmayer and G. Rozenberg (Eds.), North-Holland,
Amsterdam (1976).

H. Ehris, M. Nagl and G. Rozenberg, Graph-grammars
and their application to computer science. Lecture Notes
in Computer Science 153. Springer, Berlin (1983).

M. Nagl, Graph-Grammatiken. Theorie, Implementi-
erung, Anwendungen. Vieweg, Braunschweig (1979) (in
German).

W. Kasprzak, Model of a three-dimensional object rec-
ognition system. Ph.D. dissertation, Technical University
of Warsaw, Faculty of Electronic Engineering, Warsaw
(1986) {in Polish).

